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Integrated Circuits --
Timing Behavior of Gates
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Gates Have Non-Linear 
Input/Output Behavior

Vout

Vin
0V

Vcc

Vcc

Plotting Vout vs. Vin shows non-linear voltage behavior
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Gates Also Don’t React Immediately

Vin

Vout

time

tprop-fall

tprop-rise

tfall trise

tprop-fall and tprop-rise are measured from 50% of input swing to 50% of output swing

trise is measured from 10% of output swing to 90% of output swing
tfall is measured from 90% of output swing to 10% of output swing

Vin Vout
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Kinds of Gate Delays

• Propagation Delays
– Match intuition about how fast the gate is…

– Rising and falling delays may be different
• Take into acount which nodes rising, which nodes falling to 

compute delay through network

– Rising and falling delays may be the same
• Ignore rising/falling behavior
• Will use most of this semester

• Rise and Fall Times
– Only indirectly related to how fast the gate is…
– Will not use in this course
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Gate Delays

• Delay values are usually provided 
for the gates you use

• Use those delay values when 
analyzing a circuit’s timing

• Here are the timing values 
we will use this chapter
– Wider gates are slower
– AND = NAND+NOT, etc…

Type tprop

NOT 1ns
AND2 3ns
AND3 5ns
AND4 7ns

NAND2 2ns
NAND3 4ns
NAND4 6ns

OR2 4ns
OR3 6ns
OR4 8ns

NOR2 3ns
NOR3 5ns
NOR4 6ns
XOR2 5ns
XOR3 7ns
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Critical Path Analysis

• Given a logic circuit, how fast will it run?
– How fast will its output react to changes on its inputs?

• Find the slowest path from any input to the output
– That is the critical path
– Add up propagation delays along that path

A
B
C
D

F

Delay = tOR2 + tAND2 = 7ns

A
B

C
D

E G

F

Delay = 2 x tNAND2 + tOR3 = 10ns
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Kinds of Timing Analysis 

• The more detail you provide the more accurate the 
result

• Separate tprop-rise and tprop-fall more accurate than a 
single tprop

• Take into account other effects more accurate
– Temperature
– Power supply voltage
– Manufacturing variation
– Rise/fall times
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Environmental Delay Effects

• Temperature Variation
– Chips run faster when cool, slower when hot

• Voltage Variation
– Value of Vcc can affect delay

• Manufacturing Variation
– Two gates on the same integrated circuit may run at 

slightly different speeds

• Summary: gate delays are always given as a range of 
values that operational delay is guaranteed to be 
within.  

• Example: 2ns +/- 0.2ns
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Loading Effects

• A gate that drives more circuitry is slower 
than a gate that drives less circuitry

A

B

C D

E

FLess heavily loaded faster                              

More heavily loaded slower
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Typical Loading-Dependent Delay

• Typical delay = tprop + k x Cload
Loading-independent delay

Loading-dependent factor

Load

For MOS technology, load is mostly capacitance

For bipolar technology, load is both capacitance and current
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Analyzing A Logic Network

C=1

B=1
A

F

G

A

F

G

tNAND2

tNAND2
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More AnalysisA
B=1
C=1

D

G

F

E

A

D

E

F

G

5ns

Type tprop

NOT 1ns
AND2 3ns
AND3 5ns
AND4 7ns

NAND2 2ns
NAND3 4ns
NAND4 6ns

OR2 4ns
OR3 6ns
OR4 8ns

NOR2 3ns
NOR3 5ns
NOR4 6ns
XOR2 5ns
XOR3 7ns

8ns

12ns

20ns

23ns

30ns

33ns

27ns 37ns

35ns

32ns

39ns

B

A•B 5ns 32ns

C

C•D 20ns 30ns

E+F
8ns 23ns 33ns 35ns
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More AnalysisA
B=1
C=1
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More AnalysisA
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Completing a Timing Diagram – A Method

• Do most upstream signals first
– E and F in previous picture

• For every instant in timing diagram
– Compute each gate output as function of 

input(s)
– Place new gate output after appropriate delay 

on timing diagram.
• Move to downstream signals
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Glitch Behavior
A

B
F

A

B

F ?

• Does the glitch propagate 
to the AND output?
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Behavior #1

• Called transport delay
– All glitches, no matter how narrow are propagated to 

output

A

B

F

A

B
F
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Behavior #2

• Called inertial delay
– Glitches narrower than some threshold are filtered out 

A

B

F

A

B
F
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Which Behavior Is Correct?
• Wires usually exhibit transport delay

• Gates usually exhibit some form of inertial delay

• Regardless, both wires and gates will filter out (or 
change the waveform shape of) extremely narrow 
pulses

• We will use transport for both gates and wires since 
we don’t know the pulse width thresholds
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Completing a Timing Diagram –
A Shortcut Method

• Focus on input changes (edges)

• Everything constant in between
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A Pulse Generator

• F = A•A’ = 0 so why the pulse?
– Due to gate delays 

F
A

A

F

Pulse width = 3 x tNOT
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More Dynamic Gate Behavior

• What will this circuit do?
– It will oscillate (0 – 1 – 0 – 1 - …)

F

Pulse width = tNOT

F

Period of oscillation is 2 x tNOT



10
Page 27

ECE 238L © 2006

A

BC 0 1

00 0 0
01 0 1
11 1 1
10 1 0

F = A’B + AC

F
A’
B

A
C

Logic Hazards

This is the conventional KMap solution
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Gates Have Real Timing…
A

g1

g2

F

Called a hazard or false output –
static equations indicate F=1 but
dynamic behavior gives a “glitch”

F
A

B=1

C=1

g1

g2

Need to take into account
timing of this inverter …
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Hazards

• Each prime implicant from KMap is 
implemented using a single AND gate

• When moving between implicants, gates turn 
off and on at different times

• Momentarily get false outputs
A

BC 0 1

00 0 0
01 0 1
11 1 1
10 1 0

F
A

B=1

C=1
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A

BC 0 1

00 0 0
01 0 1
11 1 1
10 1 0

Hazard-Free Logic Design

• Make sure all prime implicants overlap

Redundant but
will eliminate
false output

F

A’
B

A
C

B
C

g1

g2

g3

On ABC = ‘111’ to ABC = ‘011’, g3 will hold F
high entire time.

F = A’B + AC + BC
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No False Output…

A

g1

g2

g3

F

F

A’
B=1

A
C=1

B=1
C=1

g1

g2

g3

g3 holds F high whole time…
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Rule: No 2 adjacent 1’s should be in different implicants

Another Example

This is not hazard-free This is hazard-free

F = CD + AC’ F = CD + AC’ + AD

AB

CD 00 01 11 10

00 0 0 1 1
01 0 0 1 1
11 1 1 1 1
10 0 0 0 0

AB

CD 00 01 11 10

00 0 0 1 1
01 0 0 1 1
11 1 1 1 1
10 0 0 0 0
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When To Do Hazard-Free Design?

• Do you always need to do HFD?
– No…

• Do it when you need to generate a signal 
which will not glitch
– Interfacing with other circuitry which is 

sensitive to edges
• Asynchronous memories
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A Caveat

• Will only work for single-input changes

• Other techniques for multiple-input changes
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