Number Representation and Binary Arithmetic

Unsigned Addition

Binary Addition

Examples:

Binary Addition w/Overflow

Add 45_{10} and 44_{10} in binary

If the operands are <u>unsigned</u>, you can use the final carry-out as the MSB of the result.

Adding 2 k bit numbers \Leftrightarrow k+1 bit result

ECE 238L

More Binary Addition w/Overflow

1111	
1111	(15 ₁₀)
+ 0001	(1 ₁₀)
0000	(0 ₁₀)

If you don't want a 5-bit result, just keep the lower 4 bits.

This is insufficient to hold the result (16).

It rolls over back to 0.

Signed Numbers

Negative Binary Numbers

- Several ways of representing negative numbers
- Most obvious is to add a sign (+ or -) to the binary integer

Sign-Magnitude 0 is + 1 is -

Number	Sign	Magnitude	Full Number
+1	0	0001	00001
-1	1	0001	10001
+5	0	0101	00101
-5	1	0101	10101
+0	0	0000	00000
-0	1	0000	10000

Easy to interpret number value

Sign-Magnitude Examples

0 0 0		0 0 0	
0 0011	(+3 ₁₀)	1 0011	(-3 ₁₀)
+ 0 0100	(+4 ₁₀)	<u>+ 1 0100</u>	(-4_{10})
0 0111	(+7 ₁₀)	1 0111	(-7_{10})

Signs are the same

Just add the magnitudes

Another Sign-Magnitude Example

Signs are different -	0 0101	(+5 ₁₀)
determine which is	+ 1 0011	(-3_{10}^{-1})
larger magnitude		

Put larger magnitude number on top	0 0101	(+5 ₁₀)
number on top	<u>- 1 0011</u>	(-3 ₁₀)
Subtract	0 0010	$(+2_{10})$

Subtract

Result has sign of larger magnitude number...

Yet Another Sign-Magnitude Example

Signs are different -	0 0010	(+2 ₁₀)
determine which is	+ 1 0101	(-5_{10}^{-1})
larger magnitude		-

Put larger magnitude	1 0101	(-5 ₁₀)
number on top	- 0 0010	(+2 ₁₀)
Subtract	1 0011	ΞŪ

Result has sign of larger magnitude number...

Sign-Magnitude

- Addition requires two separate operations
 - addition
 - subtraction
- Several decisions:
 - Signs same or different?
 - Which operand is larger?
 - What is sign of final result?
- Two zeroes (+0, -0)

Sign-Magnitude

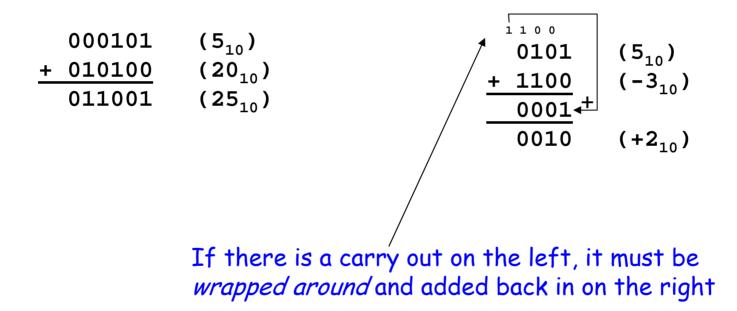
- Advantages
 - Easy to understand
- Disadvantages
 - Two different Os
 - Hard to implement in logic

One's Complement

- Positive numbers are the same as signmagnitude
- -N is represented as the complement of N
 + -N = N'

Number	1's Complement
+1	0001
-1	1110
+5	0101
+5 -5	1010
+0	0000
-0	1111

One's Complement Examples



One's Complement

- Addition complicated by end around carry
- No decisions (like SM)
- Still two zeroes (+0, -0)

One's Complement

- Advantages
 - Easy to generate -N
 - Only one addition process
- Disadvantages
 - End around carry
 - Two different Os

Two's Complement

Treat positional digits differently

$$0111_{2C} = -0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 7_{10}$$

$$1111_{2C} = -1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = -1_{10}$$

Most significant bit (MSB) given negative weight... Other bits same as in unsigned

ECE 238L

Two's Complement

Number	2's Complement
+1	0001
-1	1111
+5 -5	0101
-5	1011
+0	0000
-0	none

Sign-Extension in 2's Complement

- To make a k-bit number wider
 - replicate sign bit

$$110_{2C} = -1 \times 2^{2} + 1 \times 2^{1} = -2_{10}$$

$$1110_{2C} = -1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} = -2_{10}$$

$$11110_{2C} = -1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} = -2_{10}$$

More Sign-Extension

$$010_{2C} = 1 \times 2^{1} = 2_{10}$$
$$0010_{2C} = 1 \times 2^{1} = 2_{10}$$
$$00010_{2C} = 1 \times 2^{1} = 2_{10}$$

Works for both positive and negative numbers

Negating a 2's Complement Number

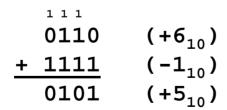
- Invert all the bits
- Add 1

invert +2₁₀ = $0010_{2C} \rightarrow 1101 + 1 = 1110_{2C} = -2_{10}$

invert -2₁₀ = $1110_{2C} \rightarrow 0001 + 1 = 0010_{2C} = +2_{10}$

Two's Complement Addition

001		111	
0101	(+5 ₁₀)	1011	(-5 ₁₀)
+ 0001	(+1 ₁₀)	<u>+ 1111</u>	(-1_{10})
0110	(+6 ₁₀)	1010	(-6 ₁₀)



Operation is same as for unsigned Same rules, same procedure

Interpretation of operands and results are different

Two's Complement

- Addition always the same
- Only 1 zero
- Representation of choice...

Two's Complement Overflow

- All representations can overflow
 - Focus on 2's complement here

$$\begin{array}{c} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & (-5_{10}) \\ + & 1 & 1 & (-4_{10}) \\ \hline 0 & 0 & 1 & (+7_{10}) \end{array}$$

The correct answer (-9) cannot be represented by 4 bits The correct answer is 10111

Overflow

Can you use leftmost carry-out as new MSB?

1000		0 0 0 0	
1011	(-5 ₁₀)	1000 (-8 ₁₀)	
+ 1100	(-4 ₁₀)	<u>+ 0111</u> (+7 ₁₀)	
10111	(-9 ₁₀)	01111 (+15 ₁₀)	??

Works here ...

Does NOT work here ...

• The answer is no, in general

Handling Overflow

- 1. Sign-extend the operands
- 2. Do the addition

$$\begin{array}{c} & \circ & \circ & \circ \\ & \mathbf{11000} & (-\mathbf{8}_{10}) \\ & \underline{+00111} & (+7_{10}) \\ & \mathbf{11111} & (-1_{10}) \end{array}$$

When Can Overflow Occur?

- Adding two positive numbers yes
- Adding two negative numbers yes
- Adding a positive to a negative no
- Adding a negative to a positive no

General Handling of Overflow

• Adding two k bit numbers gives k+1 bit result

Two options include:

- 1. Sign extend and keep entire *k+1* bit result
- 2. Throw away new bit generated (keep only *k* bits)
 - i. Detect overflow and signal an error
 - ii. Ignore the overflow (this is what most computers do)
- The choice is up to the designer

Detecting Overflow

- Overflow occurs if:
 - Adding two positive numbers gives what looks like a negative result
 - Adding two negative numbers gives what looks like a positive result
- Overflow will never occur when adding positive to negative

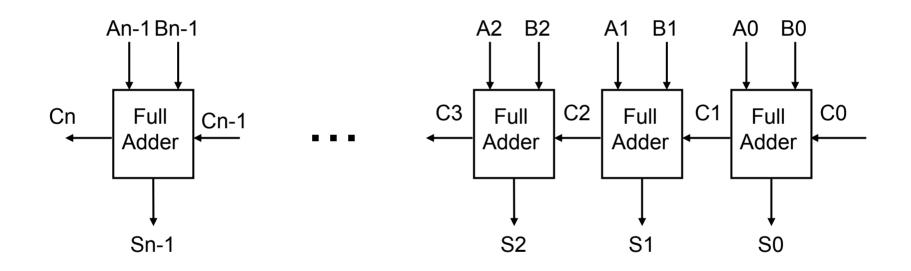
There are other ways of detecting overflow vs. what is suggested here...

ECE 238L

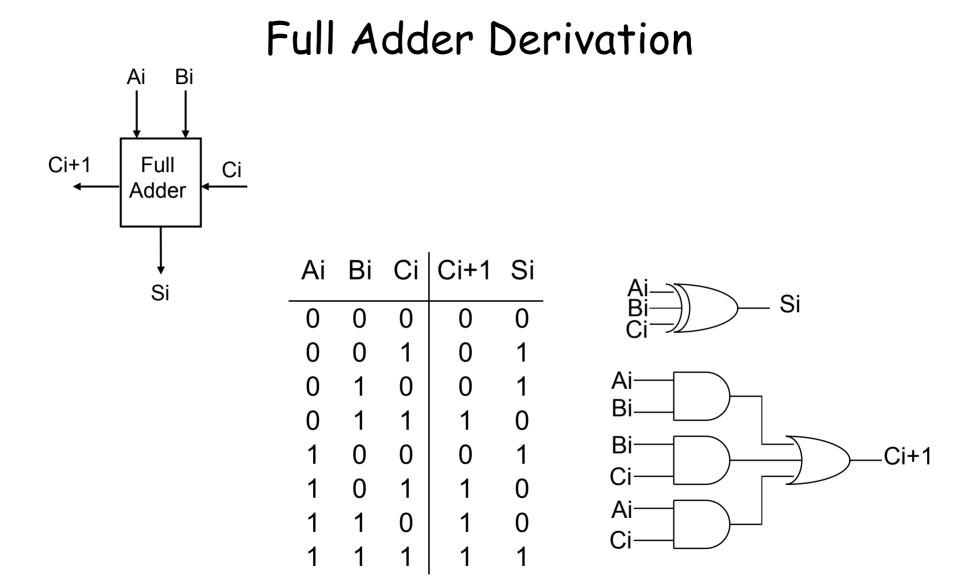
Arithmetic Circuits

Binary Adder

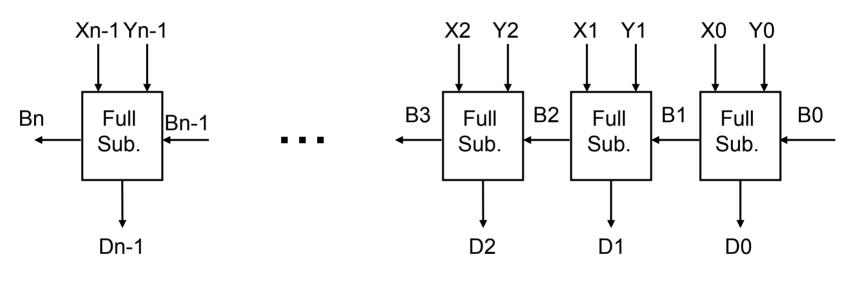
• An example of an iterative network



This type of adder is also called a ripple-carry adder because the carry ripples through from cell to cell



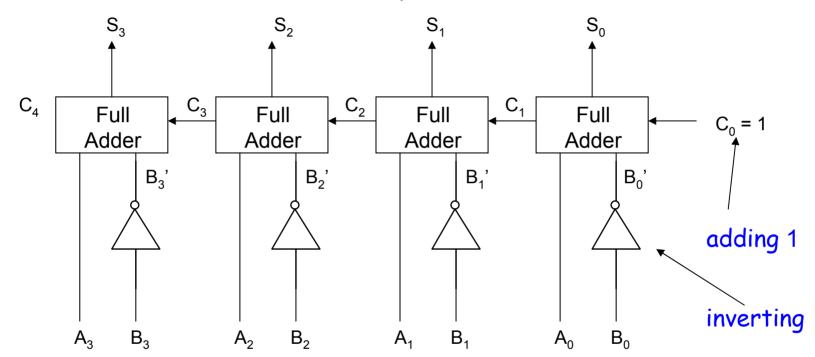
Binary Subtracter



D(ifference) = X - Y B is the borrow signal

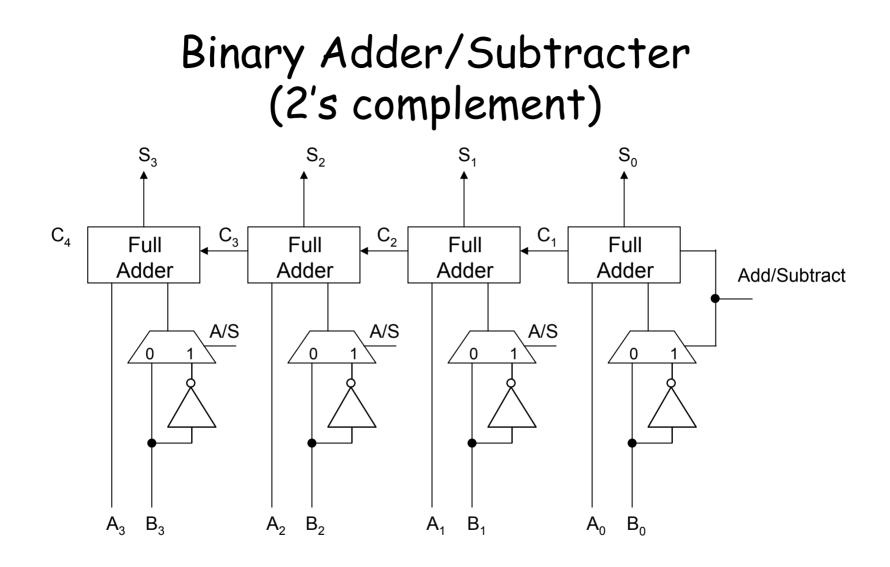
Equations generated similarly to full adder

Another Way to Make a Subtracter (2's complement)



S = A + (-B) -B is generated by inverting and adding 1

ECE 238L



Binary Arithmetic Comparison

	Sign Magnitude	One's Complement	Two's Complement
Negative	Easiest to Understand	Easy to Compute	Hardest to Compute
Number	Simple to Compute		
Zeroes	2 Zeroes	2 Zeroes	1 Zero
Largest	Same number of	Same number of	One Extra Negative
Number	+ and - Numbers	+ and - Numbers	Number
Logic	Requires Adder and	Only Adder Required	Only Adder Required
Required	Subtracter		
	Extra Logic to	Carry Wraps Around	-
	Identify Larger		
	Operand, Compute		
	Sign, etc.		
Overflow	Overflow: Carry from	Overflow: Sign of Both	Overflow: Sign of Both
Detection	High Order Adder	Operands is the Same	Operands is the Same
	Bits	and Sign of Sum is	and Sign of Sum is
		Different	Different

Summary

- Understand the three main representation of binary integers
 - Sign-Magnitude
 - One's Complement
 - Two's Complement
- Design binary adders and subtracters for each representation