
Review for Test 1 : Ch1–5

October 5, 2006

– Typeset by FoilTEX –

Positional Numbers

527.4610 = (5×102)+(2×101)+(7×100)+(4×10−1)+(6×10−2)

527.468 = (5× 82) + (2× 81) + (7× 80) + (4× 8−1) + (6× 8−2)

527.465 = illegal – why?

101011.112 = (1× 25) + (0× 24) + (1× 23) + (0× 22) + (1× 21) +
(1× 20) + (1× 2−1) + (1× 2−2)

This works for binary as well...

– Typeset by FoilTEX – 1

Positional Number Conversion

Decimal Binary Octal Hexadecimal
Base 10 Base 2 Base 8 base 16

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10

– Typeset by FoilTEX – 2

Binary Coded Decimal (BCD)

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Convert 249610 to BCD code:
2 4 9 6

↓ ↓ ↓ ↓
0010 0100 1001 0110

Not this is very different from converting

to binary which yields:

1001110000002

In BCD ...

0010010010010110

– Typeset by FoilTEX – 3

BCD Addition

448
489+
937 Binary sum

BCD carry
0100

1001
Add 6

0100

BCD sum
BCD result

0100
1000
1101
0110
0011
0011

1000
1001
0001
0110
0111
0111

++ +
1

1

1

1
++

1001

1

Add each digit. If the result is greater than 9, add 6 and carry any

overflow to the next digit. Repeat.

– Typeset by FoilTEX – 4

Binary Codes - ASCII
Character ASCII Code

c 1 1 0 0 0 1 1
d 1 1 0 0 1 0 0
e 1 1 0 0 1 0 1
f 1 1 0 0 1 1 0
g 1 1 0 0 1 1 1
h 1 1 0 1 0 0 0
I 1 1 0 1 0 0 1
j 1 1 0 1 0 1 0
k 1 1 0 1 0 1 1
l 1 1 0 1 1 0 0
m 1 1 0 1 1 0 1
n 1 1 0 1 1 1 0
o 1 1 0 1 1 1 1
p 1 1 1 0 0 0 0
q 1 1 1 0 0 0 1

Convert “help” to ASCII

h e l p

110100 1100101 1101100 1111000

– Typeset by FoilTEX – 5

Gray Codes

Gray
Number Binary Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

• Only one bit changes with each

number increment

• Not a weighted code

• Useful for interfacing to some

physical systems

– Typeset by FoilTEX – 6

Boolean Algebra

Objectives

• Understand basic Boolean Algebra

• Relate Boolean Algebra to Logic Networks

• Prove Laws using Truth Tables

• Understand and Use First 11 Theorems

• Apply Boolean Algebra to:

– Simplifying Expressions
– Multiplying Out Expressions
– Factoring Expressions

– Typeset by FoilTEX – 7

Truth Tables

A truth table provides a complete enumeration of the nputs and the

corresponding output for a function.

A B F

0 0 1

0 1 1

1 0 0

1 1 1

If there n inputs, there will

be 2n rows in the table.

Unlike with regular algebra, full enumeration is poss ible (and useful)

in Boolean Algebra.

– Typeset by FoilTEX – 8

Boolean Expressions

Boolean expressions are made up of variables and constants combined

by AND, OR and NOT.

Examples: 1, A′, A •B, C + D, AB, A(B + C), AB + C

A •B is the same as AB (• is omitted when obviou s) Parentheses

are used like in regular algebra for grouping.

A literal is each instance of a variable or constant.

This expression has 4 variables and 10 literals:

a′bd + bcd + ac′ + a′d′

– Typeset by FoilTEX – 9

Basic Boolean Algebra Theorems

Here are the first five Boolean Algebra theorems we will study and

use :

X + 0 = X

X + 1 = 1

X + X = X

(X’)’ = X

X + X’ = 1

X • 1 = X

X • 0 = 0

X • X = X

X • X’ = 0

– Typeset by FoilTEX – 10

Basic Boolean Algebra Theorems

While these laws don’t seem very exciting, they can be very useful in

simplifying Boolean expressions:

Simplify:

(MN’ + M’N) P + P’︸ ︷︷ ︸
X + 1︸ ︷︷ ︸

1

+ 1

– Typeset by FoilTEX – 11

Boolean Algebra Theorems

Commutative Laws

X • Y = Y • X X + Y = Y + X

Associative Laws

(X • Y) • X = X • (Y • Z) = X • Y • Z

(X + Y) + Z = X + (Y + Z) = X + Y + Z

Just like regular algebra

– Typeset by FoilTEX – 12

Distributive Law

X(Y+Z) = XY + XZ

Prove with a truth table:

X Y Z Y+Z X(Y+Z) XY XZ XY + XZ
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1

Again, like algebra

– Typeset by FoilTEX – 13

Other Distributive Law

Proof: X + Y Z = (X + Y)(X + Z)

(X + Y)(X + Z) = X(X + Z) + Y (X + Z)

= XX + XZ + Y X + Y Z

= X + XZ + XY + Y Z

= X • 1 + XZ + XY + Y Z

= X(1 + Z + Y) + Y Z

= X • 1 + Y Z

= X + Y Z

NOT like regular algebra!

– Typeset by FoilTEX – 14

Simplification Theorems

X Y + X Y’= X (X + Y) (X + Y’) = X

X + X Y = X X (X + Y) = X

(X + Y’) Y = X Y X Y’ + Y = X + Y

These are useful for simplifying Boolean Expressions.

The trick is to find X and Y.

(A’ + B + CD)(B’+ A’ + CD)

(A’ + CD + B)(A’ + CD + B’)

A’ + CD

Using the rule at the top right.

– Typeset by FoilTEX – 15

Gates are built with Transistors

Gate

Drain

Source

nFet

Drain

Source

3 volts Current
Flows

nFet On

Drain

Source

0 volts
Current
No

Flows

nFet Off

N-type field-effect transistor = nFet

– Typeset by FoilTEX – 16

Gates are built with Transistors

Gate

Drain

Source

pFet

Drain

Source

Current
Flows

0 volts

pFet On

Drain

Source

Current
No

Flows

3 volts

pFet Off

P-type field-effect transistor = pFet

– Typeset by FoilTEX – 17

FET-Based NAND Gate

GND

Vcc

A B

A

B

F

GND

Vcc

OFFOFF

ON

ON

0

1

1

1 1

GND

Vcc

1

1

OFF

ON

OFF ON

1

0

0

– Typeset by FoilTEX – 18

DeMorgan’s Laws - One Step Rule

(f(X1, X2, ...XN , 0, 1,+, •))′ = f(X ′
1, X

′
2, ...X

′
N , 1, 0, •,+)

1. Replace all variables with the inverse.

2. Replace + with • and • with +.

3. Replace 0 with 1 and 1 with 0.

Be careful of hierarchy...

This is the biggest source of errors, when applying DeMorgan’s Laws.

Before beginning, surround all AND terms with parentheses.

– Typeset by FoilTEX – 19

Minterm Expansion

• A minterm expansion is unique.

f(A,B, C, D) =
∑

m(0, 2, 3, 7)

• Useful for:

– Proving equality

– Shorthand for representing boolean expressions

– Typeset by FoilTEX – 20

Maxterm Expansion

Any function can be written as a product of maxterms. This is called

a:

Standard Product of Sums

(Standard POS)

A B C f

0 0 0 0 M0

0 0 1 1 M1

0 1 0 0 M2

0 1 1 0 M3

1 0 0 0 M4

1 0 1 1 M5

1 1 0 1 M6

1 1 1 1 M7

Use the Zeros for f to write the POS:

f(A,B, C) = M0M2M3M4

f(A,B, C) =
∏

M(0, 2, 3, 4)

f = (A+B+C)(A+B′+C)(A+B′C ′)(A′+B+C)

– Typeset by FoilTEX – 21

Algebraic Simplification:
Which Theorems To Use?

Essential Identities

X + 0 = X X • 1 = X

X + 1 = 1 X • 0 = 0

X + X = x X • X = X

(X’)’ = X

X + X’ = 1 X • X’ = 0

Essential Commutative, Associative, Distributive and DeMorgan’s Laws

X + Y = Y + X X • Y = Y • X

(X + Y) + Z = X + (Y + Z) = (XY)Z = X(YZ) = XYZ
X+Y+Z

X(Y + Z) = XY + XZ X + YZ = (X + Y) (X + Z)

[f(X1, X2, ...XN, 0, 1, +, •)]′ = f(X′
1, X′

2, ...X′
N, 1, 0, •, +)

Essential

X Y + X Y’ = X (X + Y) (X + Y’) = X

X + XY = X X(X+Y)=X

Useful, hard to remember, easy to re-derive

(X + Y’) Y = XY XY’ + Y = X + Y

Suggestions:

1. Focus on blue

ones!

2. Create duals

onright as needed.

3. Be familiar with

the last group.

– Typeset by FoilTEX – 22

Four Methods of Algebraic Simplification

1. Combine terms

2. Eliminate terms

3. Eliminate literals

4. Add redundant terms

– Typeset by FoilTEX – 23

Converting English to Boolean
Expressions

– Typeset by FoilTEX – 24

Review

Converting English to Boolean

1. Identify phrases

2. Identify connective words

3. Construct a Boolean Expression

4. Draw the network

– Typeset by FoilTEX – 25

Types of gates

Gates already studied:

AND

OR

Inverters

Exclusive−OR

Equivalence

– Typeset by FoilTEX – 26

Four Variable Karnaugh Map

m12

m13

m15

m8

m9

m11

m10m14

01

00

11

10

m0

m1

m3

m4

m5

m7

AB
CD 00 01 11 10

m6m2

D

A’BC

AB’C’

01

00

11

10

AB
CD 00 01 11 10

0

1 1 1 1

1111

1

10 0

0 00

F = A’BC + AB’C + D

Note the row and column numbering. This is required for adjacency.

– Typeset by FoilTEX – 27

K-Map Solution Summary

• Identify prime implicants.

• Add essentials to solution.

• Find minimum number non-essentials required to cover rest of map.

– Typeset by FoilTEX – 28

Design Hierarchy

• Design complexity requires a divide and conquer approach

• Circuit → blocks

• Each block is a distinct function

• Blocks are interconnected.

• Complex blocks are broken down into simpler blocks.

• Blocks are combined to form a system.

– Typeset by FoilTEX – 29

Basic VHDL building Blocks

Consider the following

circuit:

A

B

C

Y

C

sig1

entity few_gates is

 a : in std_logic;
 b : in std_logic;

 y : out std_logic
 c : in std_logic;

end fewgates;

 port(

);

−− ENTITY −− ARCHITECTURE
architecture behavior of fewgates is

begin
 signal sig1 : std_logic;

 sig1 <= (not a) and (not b);
 y <= c or sig1;

end behavior;

– Typeset by FoilTEX – 30

Design Procedure

• Specification

• Formulation - create truth table or boolean equations.

• Optimization - reduce requirements to achieve goal

• Technology Mapping - transform logic diagram to a new diagram

or netlist using available technology

• Verification - check the correctness of the final design

– Typeset by FoilTEX – 31

Binary Arithmetic

• Binary Addition and Subtraction

• Overflow

• Sign-Magnitude

• One and Twos-complement

• Binary Adder/Subtractors

– Typeset by FoilTEX – 32

Binary Arithmetic Comparison

Sign Magnitude One’s Complement Two’s Complement

Negative Easiest to Understand Easy to Compute Hardest to Compute

Number Simple to Compute

Zeroes 2 Zeroes 2 Zeroes 1 Zero

Largest Same number of Same number of One Extra Negative

Number + and - Numbers + and - Numbers Number

Logic Requires Adder and Only Adder Required Only Adder Required

Required Subtracter

Extra Logic to Carry Wraps Around -

Identify Larger

Operand, Compute

Sign, etc.

Overflow Overflow: Carry from Overflow: Sign of Both Overflow: Sign of Both

Detection High Order Adder Operands is the Same Operands is the Same

Bits and Sign of Sum is and Sign of Sum is

Different Different

– Typeset by FoilTEX – 33

ROM, Decoders and Muxes

Know them all!

– Typeset by FoilTEX – 34

Programmable Logic

• Read Only Memory (ROM) – a fixed array of AND gates and a programmable
array of OR gates.

• Programmable Array Logic (PAL) – a programmable array of AND gates feeding
a fixed array of OR gates.

• Programmable Logic Array (PLA) – a programmable array of AND gates feeding
a programmable array of OR gates.

• Complex Programmable Logic Device (CPLD)/Field- Programmable Gate Array
(FPGA) - complex enough to be called “architectures”

– Typeset by FoilTEX – 35

Adders and Multiplication

• Iterative combinational circuits

• Binary adders

– Half and full adders

– Ripple carry and carry lookahead adders

• Binary subtraction

• Binary adder-subtractors

• Binary multiplication

– Typeset by FoilTEX – 36

• Other arithmetic functions (constant inputs)

– Typeset by FoilTEX – 37

