Review for Test 1 : Ch1–5

October 5, 2006

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Positional Numbers

 $527.46_{10} = (5 \times 10^2) + (2 \times 10^1) + (7 \times 10^0) + (4 \times 10^{-1}) + (6 \times 10^{-2})$ $527.46_8 = (5 \times 8^2) + (2 \times 8^1) + (7 \times 8^0) + (4 \times 8^{-1}) + (6 \times 8^{-2})$ $527.46_5 = \text{illegal} - \text{why?}$ $101011.11_2 = (1 \times 2^5) + (0 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (1 \times 2^{-2})$

This works for binary as well...

Positional Number Conversion

Decimal	Binary	Octal	Hexadecimal
Base 10	Base 2	Base 8	base 16
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	0E
15	01111	17	0F
16	10000	20	10

Binary Coded Decimal (BCD)

Decimal	BCD	
0	0000	Convert 2496_{10} to BCD code:
1	0001	2 4 9 6
2	0010	$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
3	0011	0010 0100 1001 0110
4	0100	Not this is very different from converting
5	0101	to binary which yields:
6	0110	100111000000_2
7	0111	In BCD
8	1000	0010010010010110
9	1001	

BCD Addition

Add each digit. If the result is greater than 9, add 6 and carry any overflow to the next digit. Repeat.

Binary Codes - ASCII

Character	ASCII Code				
C	1100011				
d	1100100				
е	1100101				
f	1100110				
g	1100111				
h	1101000	Conv	vert "help"	to ASCII	
I	1101001	h	0	I	2
j	1101010	Π	е	I	ρ
k	1101011	110100	1100101	1101100	1111000
I	1101100				
m	1101101				
n	1101110				
Ο	1101111				
р	1110000				
q	1110001				

Gray Codes

		Gray
Number	Binary	Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

- Only one bit changes with each number increment
- Not a weighted code
- Useful for interfacing to some physical systems

Boolean Algebra

Objectives

- Understand basic Boolean Algebra
- Relate Boolean Algebra to Logic Networks
- Prove Laws using Truth Tables
- Understand and Use First 11 Theorems
- Apply Boolean Algebra to:
 - Simplifying Expressions
 - Multiplying Out Expressions
 - Factoring Expressions

Truth Tables

A truth table provides a *complete enumeration* of the nputs and the corresponding output for a function.

A	B	F
0	0	1
0	1	1
1	0	0
1	1	1

If there n inputs, there will be 2^n rows in the table.

Unlike with regular algebra, full enumeration is poss ible (and useful) in Boolean Algebra.

Boolean Expressions

Boolean expressions are made up of variables and constants combined by AND, OR and NOT.

Examples: 1, A', $A \bullet B$, C + D, AB, A(B + C), AB + C

 $A \bullet B$ is the same as AB (\bullet is omitted when obviou s) Parentheses are used like in regular algebra for grouping.

A **literal** is each instance of a variable or constant.

This expression has 4 variables and 10 literals:

a'bd + bcd + ac' + a'd'

Basic Boolean Algebra Theorems

Here are the first five Boolean Algebra theorems we will study and use :

X + 0 = X	$X \bullet 1 = X$
X+1=1	$X \bullet 0 = 0$
X + X = X	$X \bullet X = X$
(X')' = X	
X + X' = 1	$X \bullet X' = 0$

Basic Boolean Algebra Theorems

While these laws don't seem very exciting, they can be very useful in simplifying Boolean expressions:

Simplify:

 $\underbrace{(\mathsf{MN'} + \mathsf{M'N}) \mathsf{P} + \mathsf{P'}}_{\mathsf{X} + 1} + 1$

Boolean Algebra Theorems

Commutative Laws $X \bullet Y = Y \bullet X$ X + Y = Y + XAssociative Laws $(X \bullet Y) \bullet X = X \bullet (Y \bullet Z) = X \bullet Y \bullet Z$ (X + Y) + Z = X + (Y + Z) = X + Y + Z

Just like regular algebra

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{-}{E\!X}$ –

Distributive Law

$$X(Y+Z) = XY + XZ$$

Prove with a truth table:

Х	Y	Ζ	Y+Z	X(Y+Z)	XY	XZ	XY + XZ
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	0	0	1
1	1	1	1	1	1	1	1

Again, like algebra

Other Distributive Law

Proof: X + YZ = (X + Y)(X + Z)

- (X+Y)(X+Z) = X(X+Z) + Y(X+Z)
 - = XX + XZ + YX + YZ
 - = X + XZ + XY + YZ
 - $= X \bullet 1 + XZ + XY + YZ$
 - = X(1+Z+Y)+YZ
 - $= X \bullet 1 + YZ$
 - = X + YZ

NOT like regular algebra!

Simplification Theorems

These are useful for simplifying Boolean Expressions.

The trick is to find X and Y.

$$(A' + B + CD)(B' + A' + CD)$$
$$(A' + CD + B)(A' + CD + B')$$
$$A' + CD$$

Using the rule at the top right.

Gates are built with Transistors

N-type field-effect transistor = nFet

Gates are built with Transistors

P-type field-effect transistor = pFet

FET-Based NAND Gate

DeMorgan's Laws - One Step Rule

 $(f(X_1, X_2, \dots, X_N, 0, 1, +, \bullet))' = f(X_1', X_2', \dots, X_N', 1, 0, \bullet, +)$

1. Replace all variables with the inverse.

- 2. Replace + with \bullet and \bullet with +.
- 3. Replace 0 with 1 and 1 with 0.

Be careful of hierarchy...

This is the biggest source of errors, when applying DeMorgan's Laws. Before beginning, surround all AND terms with parentheses.

Minterm Expansion

• A minterm expansion is *unique*.

$$f(A,B,C,D) = \sum \mathsf{m}(0,2,3,7)$$

- Useful for:
 - Proving equality
 - Shorthand for representing boolean expressions

Maxterm Expansion

Any function can be written as a product of maxterms. This is called a:

Standard Product of Sums (Standard POS)

А	В	С	f	
0	0	0	0	M0
0	0	1	1	M1
0	1	0	0	M2
0	1	1	0	M3
1	0	0	0	M4
1	0	1	1	M5
1	1	0	1	M6
1	1	1	1	M7

Use the **Zeros** for f to write the POS:

$$f(A, B, C) = M_0 M_2 M_3 M_4$$

$$f(A, B, C) = \prod M(0, 2, 3, 4)$$

f = (A + B + C)(A + B' + C)(A + B'C')(A' + B + C)

Algebraic Simplification: Which Theorems To Use?

Essential Identities				
X + 0 = X	$X \bullet 1 = X$			
X + 1 = 1	$X \bullet 0 = 0$			
X + X = x	$X \bullet X = X$			
(X')' = X				
X + X' = 1	$X \bullet X' = 0$			
Essential Commutative, Associative	e, Distributive and DeMorgan's Laws			
X + Y = Y + X	$X \bullet Y = Y \bullet X$			
(X + Y) + Z = X + (Y + Z) =	(XY)Z = X(YZ) = XYZ			
X+Y+Z				
X(Y + Z) = XY + XZ	X + YZ = (X + Y) (X + Z)			
$\overline{[f(X_1, X_2, \dots, X_N, 0, 1, +, \bullet)]'} = f(X_1', X_2', \dots, X_N', 1, 0, \bullet, +)$				
Esse	ential			
X Y + X Y' = X	(X + Y) (X + Y') = X			
X + XY = X	X(X+Y)=X			
Useful, hard to remember, easy to re-derive				
(X + Y') Y = XY	XY' + Y = X + Y			

Suggestions:

- 1. Focus on blue ones!
- 2. Create duals onright as needed.
- 3. Be familiar with the last group.

Four Methods of Algebraic Simplification

- 1. Combine terms
- 2. Eliminate terms
- 3. Eliminate literals
- 4. Add redundant terms

Converting English to Boolean Expressions

Review

Converting English to Boolean

- 1. Identify phrases
- 2. Identify connective words
- 3. Construct a Boolean Expression
- 4. Draw the network

Types of gates

Gates already studied:

Four Variable Karnaugh Map

Note the row and column numbering. This is required for adjacency.

K-Map Solution Summary

- Identify prime implicants.
- Add essentials to solution.
- Find minimum number non-essentials required to cover rest of map.

Design Hierarchy

- Design complexity requires a *divide and conquer* approach
- Circuit \rightarrow *blocks*
- Each block is a distinct function
- Blocks are interconnected.
- Complex blocks are broken down into simpler blocks.
- Blocks are combined to form a *system*.

Basic VHDL building Blocks

Consider the following circuit:

-- ENTITY

entity few_gates is
port(
 a : in std_logic;
 b : in std_logic;
 c : in std_logic;
 y : out std_logic
);
end fewgates;

-- ARCHITECTURE

architecture behavior of fewgates is
signal sig1 : std_logic;
begin
sig1 <= (not a) and (not b);
y <= c or sig1;
end behavior;</pre>

Design Procedure

- Specification
- Formulation create truth table or boolean equations.
- Optimization reduce requirements to achieve goal
- Technology Mapping transform logic diagram to a new diagram or netlist using available technology
- Verification check the correctness of the final design

Binary Arithmetic

- Binary Addition and Subtraction
- Overflow
- Sign-Magnitude
- One and Twos-complement
- Binary Adder/Subtractors

Binary Arithmetic Comparison

	Sign Magnitude	One's Complement	Two's Complement
Negative	Easiest to Understand	Easy to Compute	Hardest to Compute
Number	Simple to Compute		
Zeroes	2 Zeroes	2 Zeroes	1 Zero
Largest	Same number of	Same number of	One Extra Negative
Number	+ and - Numbers	+ and - Numbers	Number
Logic	Requires Adder and	Only Adder Required	Only Adder Required
Required	Subtracter		
	Extra Logic to	Carry Wraps Around	-
	Identify Larger		
	Operand, Compute		
	Sign, etc.		
Overflow	Overflow: Carry from	Overflow: Sign of Both	Overflow: Sign of Both
Detection	High Order Adder	Operands is the Same	Operands is the Same
	Bits	and Sign of Sum is	and Sign of Sum is
		Different	Different

ROM, Decoders and Muxes

Know them all!

Programmable Logic

- Read Only Memory (ROM) a fixed array of AND gates and a programmable array of OR gates.
- Programmable Array Logic (PAL) a programmable array of AND gates feeding a fixed array of OR gates.
- Programmable Logic Array (PLA) a programmable array of AND gates feeding a programmable array of OR gates.
- Complex Programmable Logic Device (CPLD)/Field- Programmable Gate Array (FPGA) complex enough to be called "architectures"

Adders and Multiplication

- Iterative combinational circuits
- Binary adders
 - Half and full adders
 - Ripple carry and carry lookahead adders
- Binary subtraction
- Binary adder-subtractors
- Binary multiplication

• Other arithmetic functions (constant inputs)