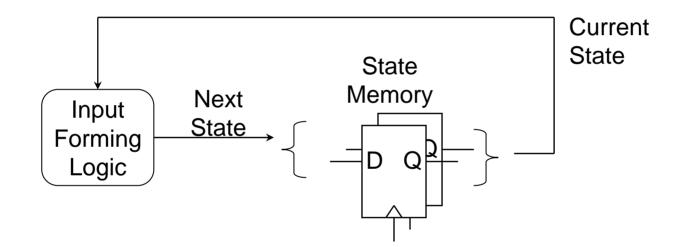
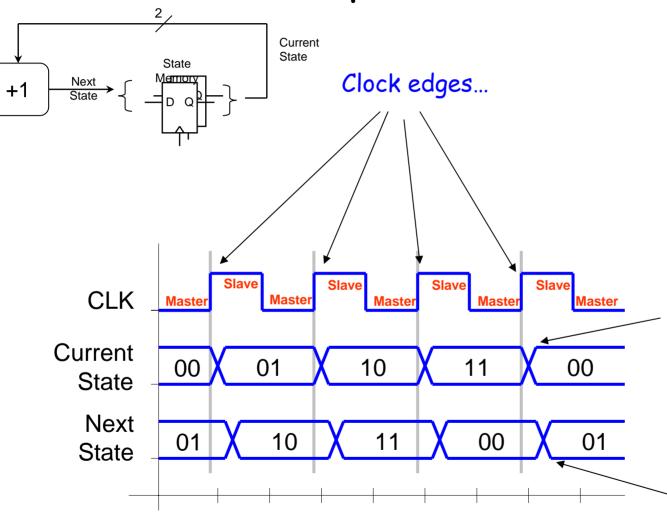
Quick Overview of Counters

Counters Transition Tables Moore Outputs Stategraphs

General Sequential Systems



A Sequential Counter



The current state loads the next state values in response to the clock edge.

IFL reacts after some gate delays to produce a new next state.

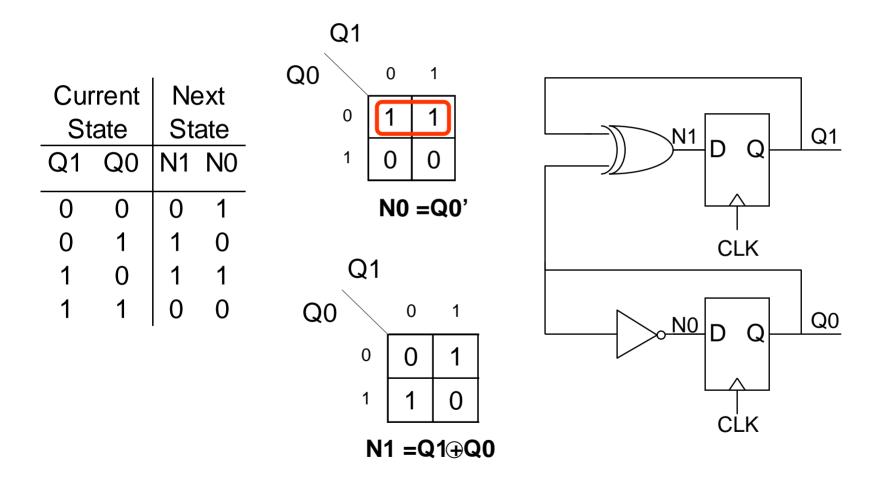
Transition Table for 2-Bit Counter

O una set	N.a. 4		rent		
Current		St	ate	St	ate
State	State	Q1	Q0	N1	N0
00	01	0	0	0	1
01	10	0	1	1	0
10	11	1	0	1	1
11	00	1	1	0	0

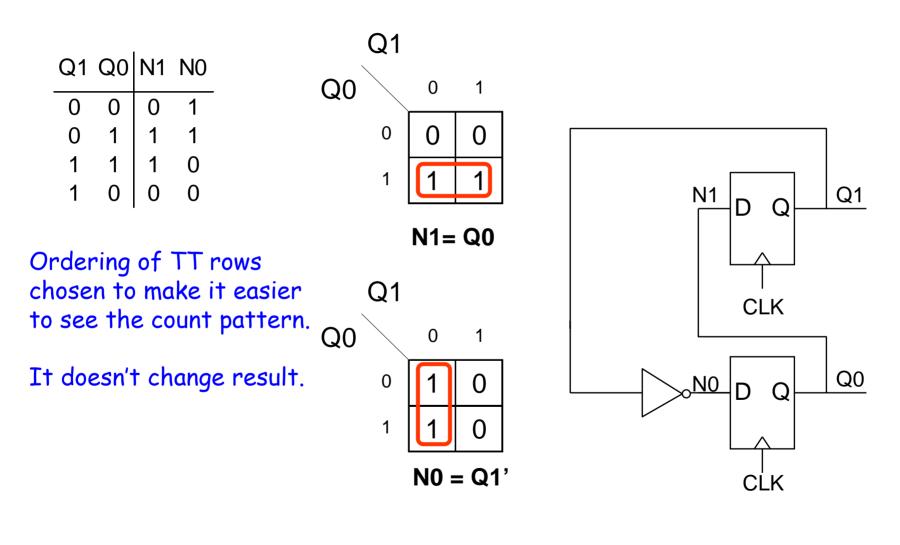
It is the truth table for the input forming logic...

It describes what the *next state* values are as a function of the *current state* (clock is assumed)

Implementation of 2-Bit Counter



Example 2 - A Gray Code Counter



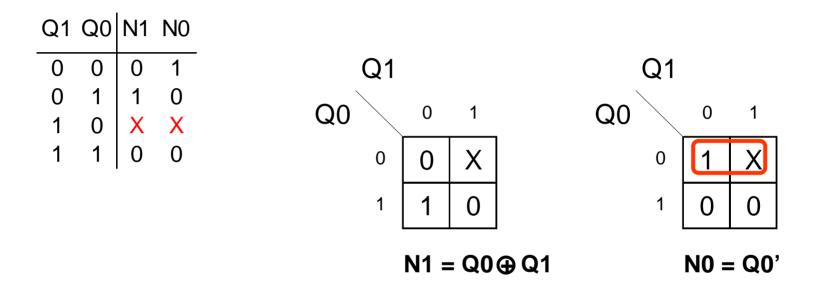
Example 3 - Not All Count Values Used

Desired count sequence = 00 - 01 - 11 - 00 ...

	Q1	Q0	N1	N 0
-	0	0	0	1
	0	1	1	1
	1	1	0	0
	1	0	?	?

What should next state for 10 be?

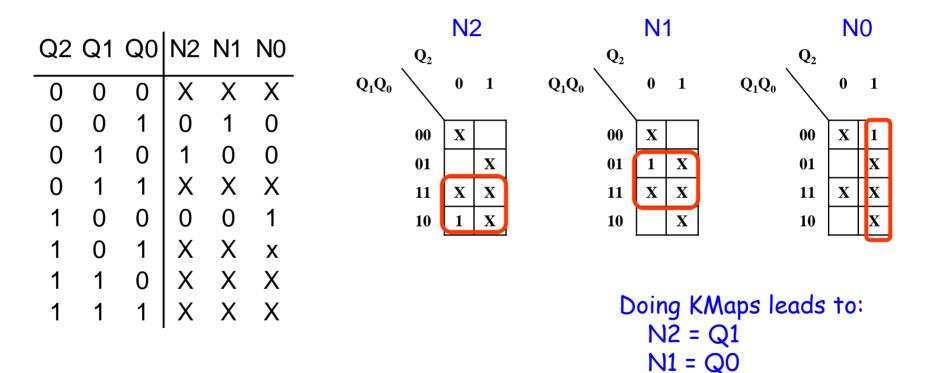
Example 3 - Not All Count Values Used



Do the normal KMap w/don't cares minimization...

Example 4 - A Ring Counter

Desired count sequence = 001 - 010 - 100 - 001 ...

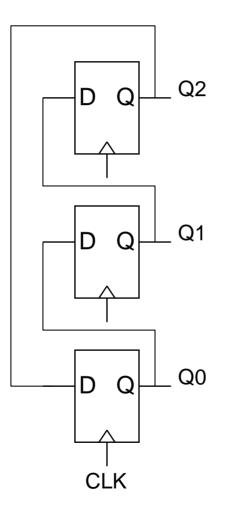


15 COUNTERS © 2006 Page 9

No big surprise here!!!!!

N0 = Q2

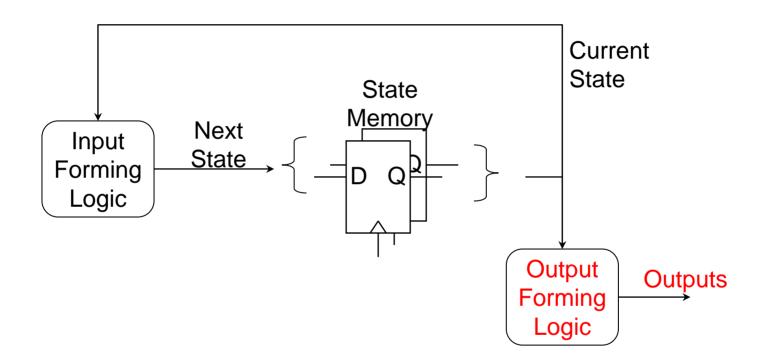
Example 4 - A Ring Counter



General Counter Design Procedure

- Write transition table for counter
 - Use X's as appropriate
- Reduce each Nx variable to an equation
- Implement input forming logic (IFL) using gates
- Draw schematic using FF's + IFL

Counters With Outputs



Outputs = f(CurrentState)

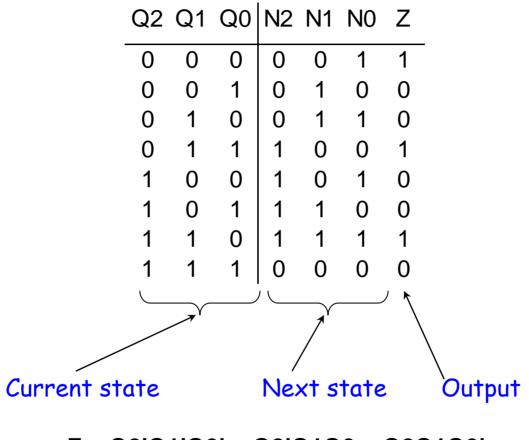
Counters With Outputs

Z=1 when count={0,3,6}

Q2	Q1	Q0	Ζ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Z is called a Moore or static output. It is a function only of the current state

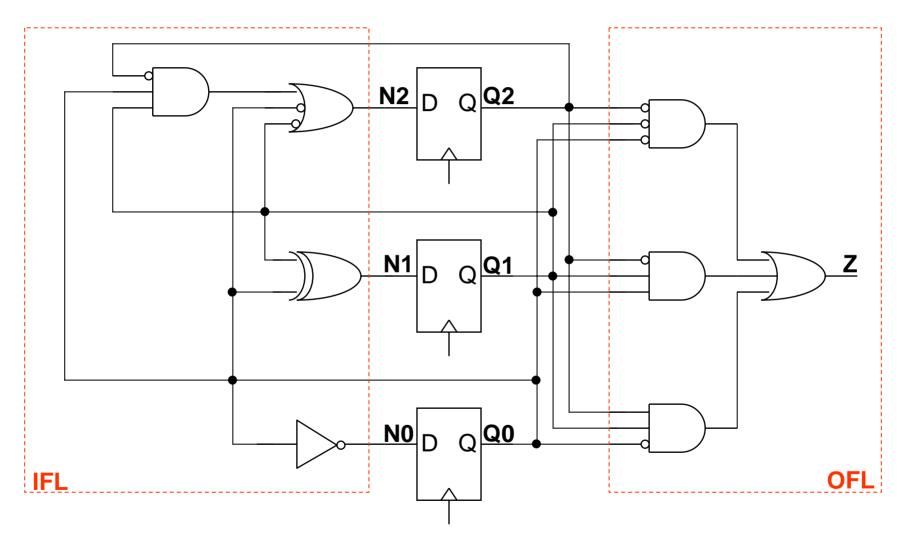
Combined Transition Table



Z = Q2'Q1'Q0' + Q2'Q1Q0 + Q2Q1Q0'

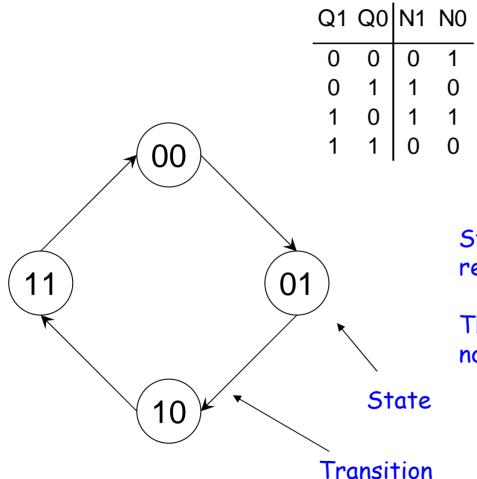
(implement OFL with gates)

Counter With A Moore Output



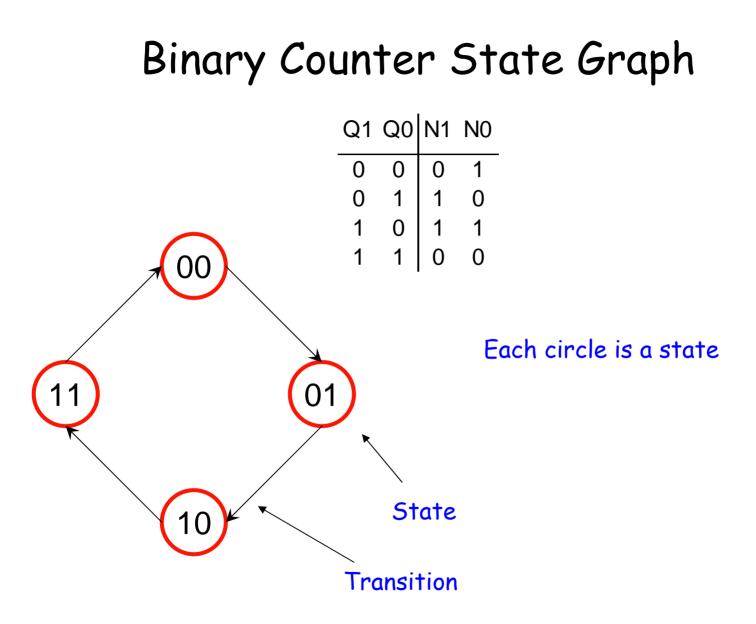
State Graphs

Binary Counter State Graph

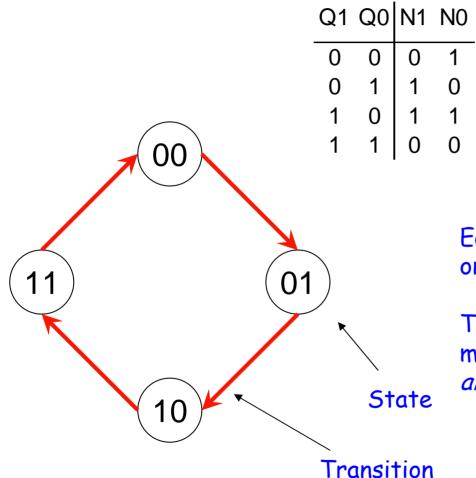


State graphs are graphical representations of TT's

They contain the same information: no more, no less



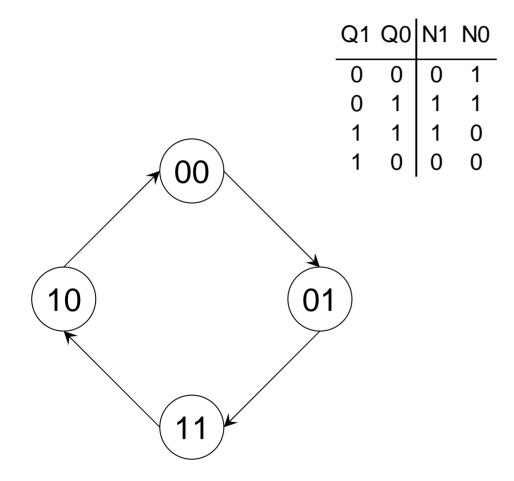
Binary Counter State Graph



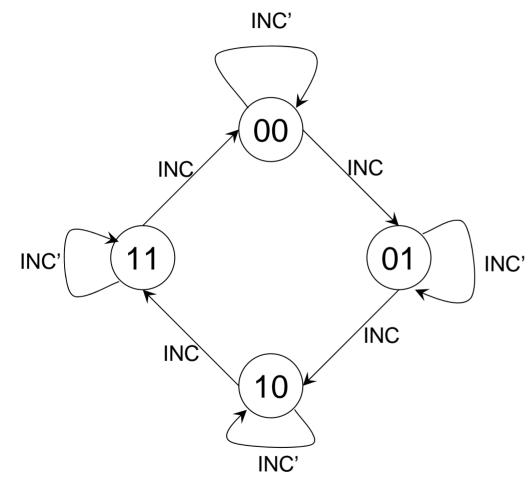
Each arc is a transition from one state to another

These arcs are unlabelled, meaning the transition is *always* taken on the clock edge

Gray Code Counter State Graph



State Graphs for Counters With Inputs

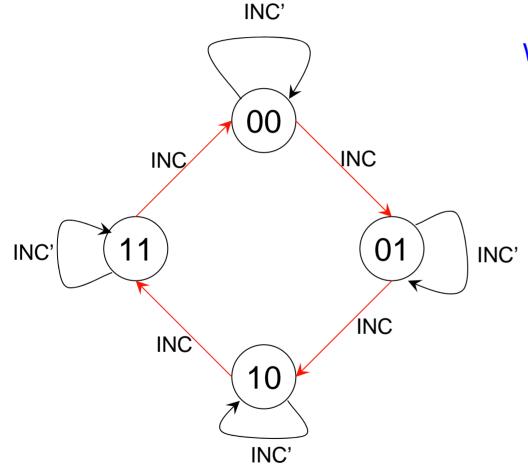


INC controls whether transition is taken or not...

INC	Q1	Q0	N1	N0
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

There is a one-to-one correspondence between the rows of the TT and the arcs in the SG

State Graphs for Counters With Inputs

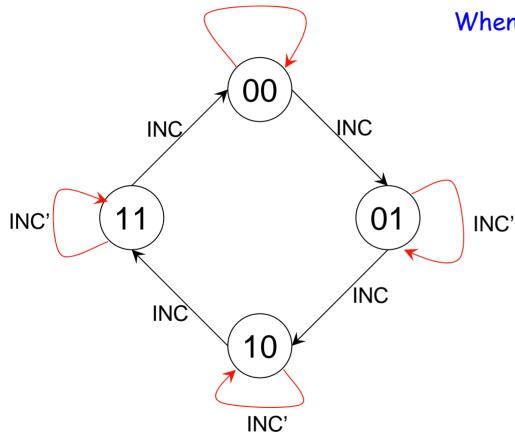


When INC=1, we change state...

INC	Q1	Q0	N1	N0
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

State Graphs for Counters With Inputs

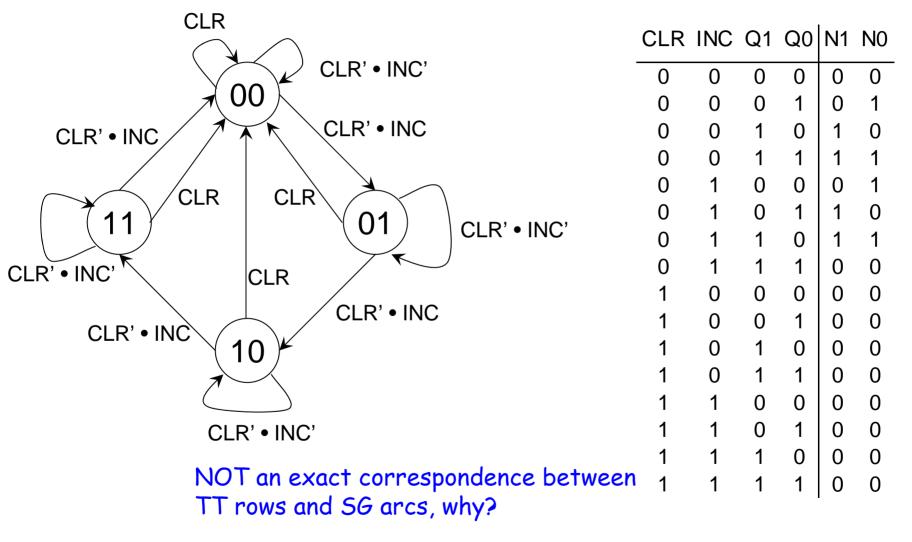
INC'



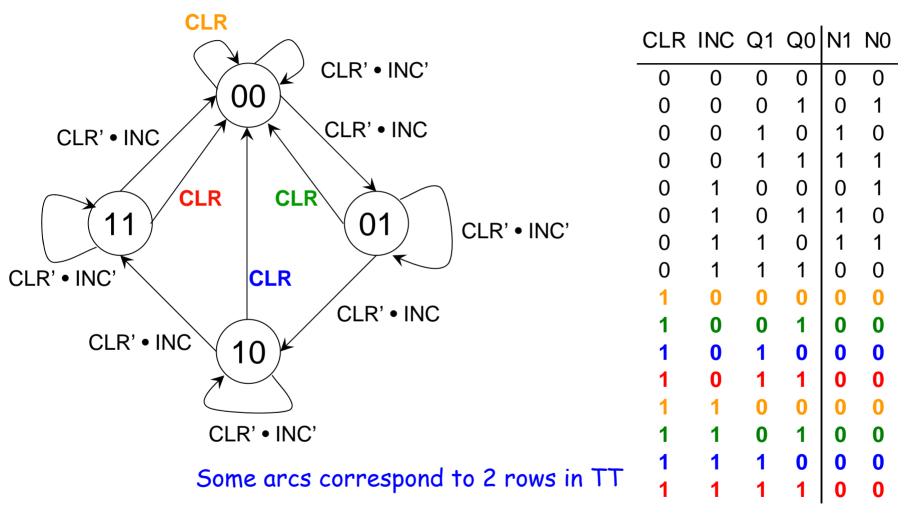
When INC=0, we stay in the same state...

INC	Q1	Q0	N1	N0
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

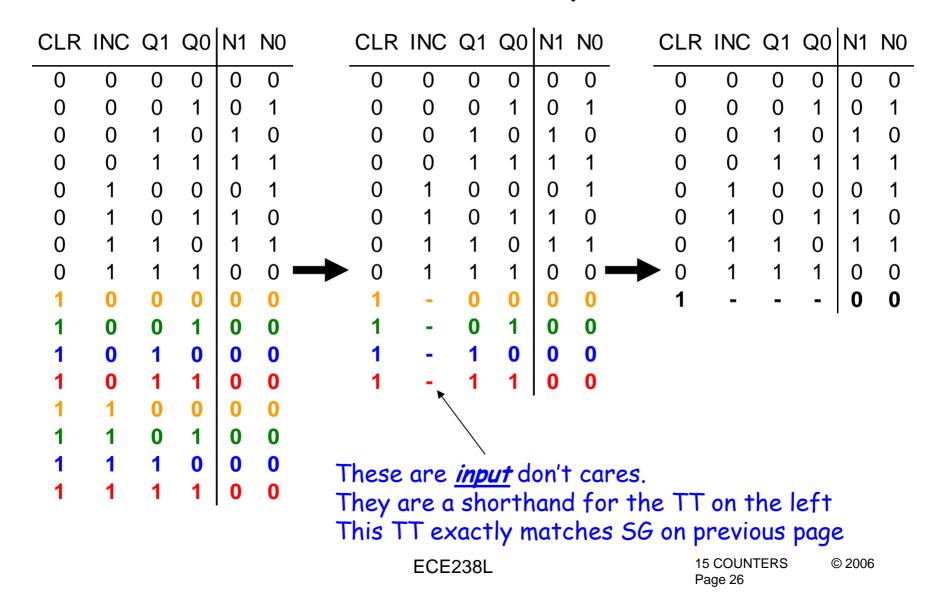
SG for Counter With Multiple Inputs



SG for Counter With Multiple Inputs



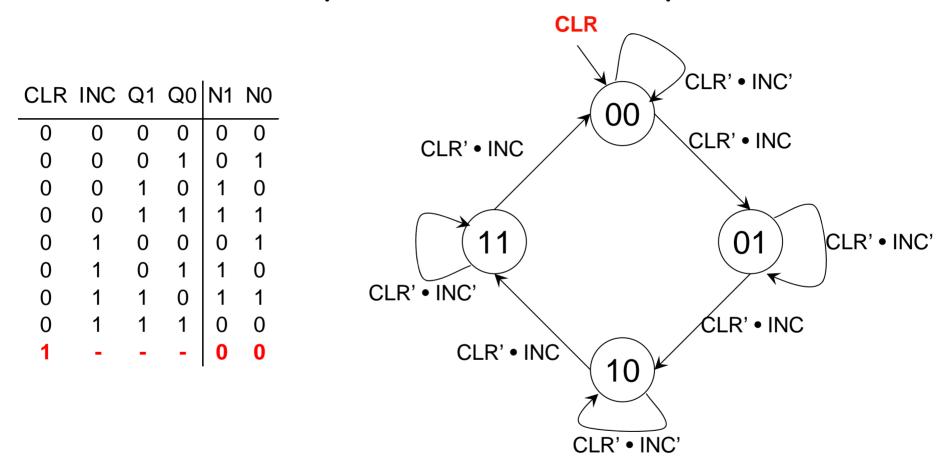
Transition Table Simplification



Simplified Transition Tables With Input Don't Cares

- Contain <u>exactly</u> same information as original
 - Shorthand way of writing
- Should be able to easily convert back/forth

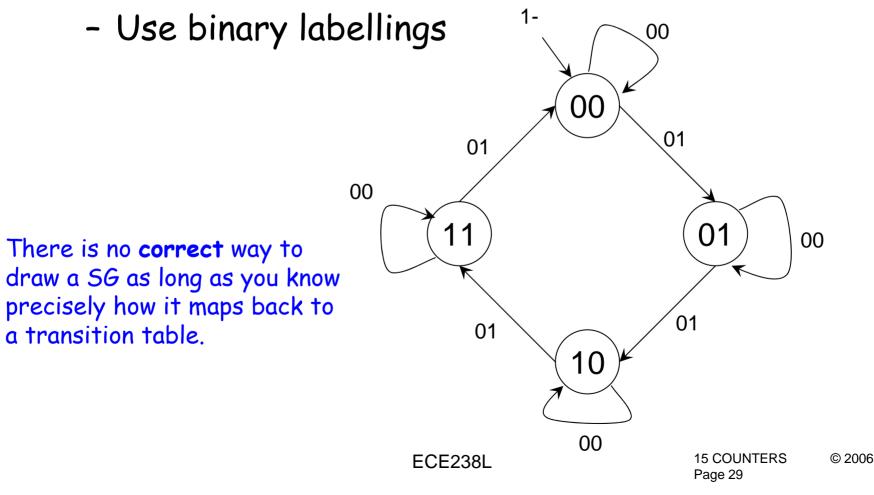
Simplified State Graph



There is now a one-to-one correspondence between rows and arcs...

More Simplified State Graphs

• If the order of inputs is known...



Design Procedure Using State Graphs

- 1. Draw the state graph
- 2. Create an equivalent transition table
- 3. If transition table contains input don't cares,
 - unfold it to a full transition table
- 4. Complete the design using KMaps, gates, FF's

Cover Examples in Book

- Page 260 use white board
- Look @ process on 268
- Another Example on 276 use whiteboard