
18 STATEGRAPHS/FSM
Page 1

ECE 238L © 2006

State Graphs
FSMs

18 STATEGRAPHS/FSM
Page 2

ECE 238L © 2006

Binary Counter State Graph

00

10

0111

Q1 Q0 N1 N0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

State

Transition

State graphs are graphical
representations of TT’s

They contain the same information:
no more, no less

18 STATEGRAPHS/FSM
Page 3

ECE 238L © 2006

Design Procedure Using State Graphs

1. Draw the state graph

2. Create an equivalent transition table

3. If transition table contains input don’t cares,
- unfold it to a full transition table

4. Complete the design using KMaps, gates, FF’s

18 STATEGRAPHS/FSM
Page 4

ECE 238L © 2006

State Graphs With Moore Outputs

00

10

0111

Z

Z

Q1 Q0 N1 N0 Z

0 0 0 1 1
0 1 1 0 0
1 0 1 1 0
1 1 0 0 1

Write the output next to the states it is asserted in…
Underline it to make it more clear

18 STATEGRAPHS/FSM
Page 5

ECE 238L © 2006

Another SG With A Moore Output

INC Q1 Q0 N1 N0 Z

0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 0 0 1

00

10

0111

INC

INC
INC

INC

INC’

INC’

INC’

INC’

Z

Z

Moore output shows up in multiple TT rows…

18 STATEGRAPHS/FSM
Page 6

ECE 238L © 2006

State Graphs and Mealy Outputs

INC Q1 Q0 N1 N0 Y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 0 0 1

00

10

0111

INC

INC
INC

INC / Y

INC’

INC’

INC’

INC’

Mealy output is associated with an arc in SG

18 STATEGRAPHS/FSM
Page 7

ECE 238L © 2006

Properly Formed State Graphs

• A properly formed state graph is both:

Complete

and

Conflict-free

18 STATEGRAPHS/FSM
Page 8

ECE 238L © 2006

An Incomplete State Graph

• This SG is incomplete. Can you see why?

00

10

0111

INC

INC
INC

INC

INC’INC’

INC’

What happens in state ’10’ when INC=0?

18 STATEGRAPHS/FSM
Page 9

ECE 238L © 2006

An Incomplete State Graph

• This SG is incomplete. Can you see why?

00

10

0111

INC

INC
INC

INC

INC’INC’

INC’

There is a missing row in the TT as well…

INC Q1 Q0 N1 N0

0 0 0 0 0
0 0 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

18 STATEGRAPHS/FSM
Page 10

ECE 238L © 2006

Complete State Graphs

• For a SG to be complete:
– Paths leaving each state must cover all cases

• To check:
– OR together conditions on all arcs leaving a

given state
– If result = ‘1’, state is complete
– If result ≠ ‘1’, state is incomplete

18 STATEGRAPHS/FSM
Page 11

ECE 238L © 2006

Checking for Completeness

00

10

0111

INC

INC
INC

INC

INC’

INC’INC’

INC + INC’ = 1
State 00 is OK

INC + INC’ = 1
State 01 is OK

INC + INC’ = 1
State 11 is OK

INC ≠ 1
State 10 is not OK

18 STATEGRAPHS/FSM
Page 12

ECE 238L © 2006

Alternate Check for Completeness

• Full transition table (no input don’t cares)
should have 2n rows where:

n = (#inputs + #state variables)
INC Q1 Q0 N1 N0

0 0 0 0 0
0 0 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

This only has 7 rows, something is missing…

18 STATEGRAPHS/FSM
Page 13

ECE 238L © 2006

Additional Completeness Considerations

• If some input combination will never occur
– Don’t need to enforce completeness

01
INCCLR

What about the case of CLR•INC?

If INC=CLR=‘1’ will never occur,
this incomplete state is OK

CLR’ • INC’

18 STATEGRAPHS/FSM
Page 14

ECE 238L © 2006

Conflicts in State Graphs
• This SG has a conflict, can you find it?

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’

CLR’ • INC’

CLR’ • INC’
CLR

11

18 STATEGRAPHS/FSM
Page 15

ECE 238L © 2006

Conflicts in State Graphs
• This SG has a conflict, can you find it?

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’

CLR’ • INC’

CLR’ • INC’
CLR

11

What happens in state ’10’
when CLR=INC=‘1’?

18 STATEGRAPHS/FSM
Page 16

ECE 238L © 2006

Conflicts in State Graphs

One arc says to go to state 00,
another says to go to state 11

This is a conflict…

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’

CLR’ • INC’

CLR’ • INC’
CLR

11

• This SG has a conflict, can you find it?

18 STATEGRAPHS/FSM
Page 17

ECE 238L © 2006

Conflicts in State Graphs
• The corresponding transition table has a

problem as well…

CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
1 - 1 0 0 0
- 1 1 0 1 1
0 1 1 1 0 0
1 - - - 0 0

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’

CLR’ • INC’
CLR

CLR’ • INC’

11

18 STATEGRAPHS/FSM
Page 18

ECE 238L © 2006

Conflicts in State Graphs

CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
1 - 1 0 0 0
- 1 1 0 1 1
0 1 1 1 0 0
1 - - - 0 0

Do you want 2 TT
rows active at
the same time?

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’

CLR’ • INC’
CLR

CLR’ • INC’

11

• The corresponding transition table has a
problem as well…

18 STATEGRAPHS/FSM
Page 19

ECE 238L © 2006

Conflict-Free State Graphs

• For a State Graph to not have conflicts:
– Paths leaving each state must not conflict with

one another
• To check:

– For each pair of arcs leaving a given state,
AND together their conditions

– If result = ‘0’, arcs have no conflict
– If result ≠ ‘0’, arcs have a conflict

18 STATEGRAPHS/FSM
Page 20

ECE 238L © 2006

Checking for Conflicts

00

10

01

CLR’ • INC

CLR’ • INC’
CLR

CLR

CLR

CLR’ • INCINC

CLR’ • INC

CLR’ • INC’
CLR

CLR’ • INC’

CLR’ • INC’ 11

CLR • (CLR’ • INC’) = 0
These arcs OK

(CLR’ • INC’) • (CLR’ • INC) = 0
These arcs OK

INC • CLR ≠ 0
These arcs not OK Remember – you must do

all pairs of arcs leaving
each state…

18 STATEGRAPHS/FSM
Page 21

ECE 238L © 2006

Alternate Check for Conflicts

• Full transition table (no input don’t cares)
should have 2n rows where:

n = (#inputs + #state variables)

This has 18 rows, something is wrong…

CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 0
0 1 1 0 1 1
1 1 1 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

18 STATEGRAPHS/FSM
Page 22

ECE 238L © 2006

Additional Conflict Considerations

• If some input combination will never occur
– Don’t need to worry about conflicts

01
INCCLR

If INC=CLR=‘1’ will never occur, the conflict shown here is OK.
But, you will have to make a decision on how to write the TT

CLR’ • INC’

18 STATEGRAPHS/FSM
Page 23

ECE 238L © 2006

Summary - Properly Formed State Graphs

• A properly formed state graph is both
– Complete
– Conflict-free

• Perform tests to ensure you have covered all
the cases once and only once

18 STATEGRAPHS/FSM
Page 24

ECE 238L © 2006

Summary – SG’s vs. TT’s

• A state graph is simply a graphical way of
writing a Transition Table
– No additional information

• You should be adept at converting between
them

• Design is always done from TT to KMaps to
gates/FF’s

00

10

0111
INC

INC
INC

INC

INC’

INC’

INC’

INC’

INC Q1 Q0 N1 N0

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

18 STATEGRAPHS/FSM
Page 25

ECE 238L © 2006

Finite State Machines

18 STATEGRAPHS/FSM
Page 26

ECE 238L © 2006

State Machine Concepts

• State, current state, next state, state
registers

• IFL, OFL, Moore outputs, Mealy outputs
• Transition tables

– With output don’t cares (X’s)
– With input don’t cares (-’s)

• State graphs
– And their correspondence to TT’s

18 STATEGRAPHS/FSM
Page 27

ECE 238L © 2006

Counters as State Machines

• A counter is a state machine
– Where the state encodings are significant

Q0

Q2
Q3

Q1

0000
0001

0010

0011

0100
0101

0110

0111

1000

1001

7 Segment
Decoder

18 STATEGRAPHS/FSM
Page 28

ECE 238L © 2006

State Machines

• A state machine is a sequential circuit which
progresses through a series of states in
reponse to inputs
– The output values are usually significant
– The state encodings are usually not significant

• Unlike with counters

18 STATEGRAPHS/FSM
Page 29

ECE 238L © 2006

State Encodings

• In this machine, the state encodings don’t
matter

• The output values do…

…Event 1
Event 2Event 1

Event 2 Event 3

Output1
Output2 Output3

18 STATEGRAPHS/FSM
Page 30

ECE 238L © 2006

A State Machine Controller for a
Photocopier

Finite
State

Machine

Lamps

Motors

Display

Buttons

Timers

Switches

Inputs Outputs

1) FSM receives inputs from copier
2) FSM generates control outputs in response
3) States help it remember where it is in the copy process…

18 STATEGRAPHS/FSM
Page 31

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0
Because the encodings don’t matter,
we will use symbolic state names

What does this machine do?

18 STATEGRAPHS/FSM
Page 32

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

It is a sequence detector.

It has 1 input: ‘Xin’ and one output: ‘Z’

It detects the sequence 0..1..1 on the input.
When detected, output ‘Z’ is asserted.

18 STATEGRAPHS/FSM
Page 33

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

As long as Xin=1, we stay in state S0

1..1..1..1..1..

18 STATEGRAPHS/FSM
Page 34

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

When Xin=0, we go to state S1

1..1..1..1..1..0..

18 STATEGRAPHS/FSM
Page 35

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

As long as Xin=0, we stay in state S1

1..1..1..1..1..0..0..0..0..

18 STATEGRAPHS/FSM
Page 36

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

When Xin=1, we go to state S2

1..1..1..1..1..0..0..0..0..1..

18 STATEGRAPHS/FSM
Page 37

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

If Xin=1 again, we go to state S3

1..1..1..1..1..0..0..0..0..1..1

SUCCESS! Raise the Z output

18 STATEGRAPHS/FSM
Page 38

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

Once we enter state S3, we never leave…

18 STATEGRAPHS/FSM
Page 39

ECE 238L © 2006

A Sequence Detector FSM

S2

S1S3

Xin’

Xin
Xin

Xin’

Xin’

Xin

Z

S0

What if we don’t see the second Xin=1?

1..1..1..1..1..0..0..0..0..1..0..

18 STATEGRAPHS/FSM
Page 40

ECE 238L © 2006

Implementing the Sequence Detector
FSM

1. Create symbolic Transition Table
2. Assign state encoding
3. Create conventional Transition Table
4. Do standard implementation steps

Xin CS NS Z

0 S0 S1 0
1 S0 S0 0
0 S1 S1 0
1 S1 S2 0
0 S2 S1 0
1 S2 S3 0
- S3 S3 1

Xin Q1 Q0 N1 N0 Z

0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 1 0
1 0 1 1 0 0
0 1 0 0 1 0
1 1 0 1 1 0
- 1 1 1 1 1

Symbolic TT Conventional TTState Assignment

S0 = 00
S1 = 01
S2 = 10
S3 = 11

18 STATEGRAPHS/FSM
Page 41

ECE 238L © 2006

Sequence Detector Implementation

Q1

CLK

Q0

CLK

Q1

D Q

D Q

Q0
N1

N0

Q1
Xin
Xin
Q0

Xin’
Q1

Z

N1 = Q1•Q0 + Xin•Q1 + Xin•Q0
N0 = Xin’ + Q1
Z = Q1•Q0

18 STATEGRAPHS/FSM
Page 42

ECE 238L © 2006

A Problem With the Sequence Detector

• This FSM only detects first occurrence of
011 on input…

• Here is a timing diagram
– actual screenshot from a simulation

1 1 1 1 1 10 0 0

18 STATEGRAPHS/FSM
Page 43

ECE 238L © 2006

Improved Sequence Detector

• This starts over each time 011 is detected…

S2

S1Xin’

Xin

Xin

Xin’

Xin’

Xin

Z

S0

S3

Xin’

Xin

18 STATEGRAPHS/FSM
Page 44

ECE 238L © 2006

Improved Detector Timing Diagram

0 0 0 1 1 1 0 1 1 0 001

Z=1 any time state is S3

Looking at Xin, does it look like Z is a cycle late?

18 STATEGRAPHS/FSM
Page 45

ECE 238L © 2006

Mealy Version of Sequence Detector

S2

S1Xin’

Xin
Xin / Y

Xin

Xin’

Xin’

S0

S3

Xin’Xin

Output is asserted during the second ‘1’
of the 011 sequence…

18 STATEGRAPHS/FSM
Page 46

ECE 238L © 2006

Mealy Version Timing Diagram

0 1 1 1 0 1 1 1

Y

Note how Mealy output follows input during state S2

Output is a cycle earlier than in Moore machine –
it appears in S2 rather than in S3

18 STATEGRAPHS/FSM
Page 47

ECE 238L © 2006

Simplified Mealy Sequence Detector

• A characteristic ofMealy
machines is they often require
fewer states than Moore
machines

• Here is simplified but
equivalent FSM

S2

S1

Xin

Xin / Y

Xin

Xin’

Xin’

S0
Xin’

18 STATEGRAPHS/FSM
Page 48

ECE 238L © 2006

Example FSM’s

Two Car Wash Controllers

18 STATEGRAPHS/FSM
Page 49

ECE 238L © 2006

Basic Car Wash FSM Operation

1. Wait for a token to be inserted
2. Reset timer
3. Turn on water pump until timer expires
4. Start over

• This assumes existence of:
– Token acceptance mechanism
– Timer
– Digitally-controlled water pump

18 STATEGRAPHS/FSM
Page 50

ECE 238L © 2006

Basic Car Wash FSM SG

S_SPRAY

S_TOKEN

TOKEN

TOKEN’

CLRT

S_IDLE

TDONE’

TDONE

Wait for token…

Clear timer…

Spray car while
waiting for timer
to expire…

SPRAY

18 STATEGRAPHS/FSM
Page 51

ECE 238L © 2006

TOKEN TDONE CS NS CLRT SPRAY

0 - S_IDLE S_IDLE 0 0
1 - S_IDLE S_TOKEN 0 0
- - S_TOKEN S_SPRAY 1 0
- 0 S_SPRAY S_SPRAY 0 1
- 1 S_SPRAY S_IDLE 0 1

TOKEN TDONE Q1 Q0 N1 N0 CLRT SPRAY

0 - 0 0 0 0 0 0
1 - 0 0 0 1 0 0
- - 0 1 1 0 1 0
- 0 1 0 1 0 0 1
- 1 1 0 0 0 0 1

TOKEN TDONE Q1 Q0 N1 N0 CLRT SPRAY

0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 1
0 0 1 1 X X X X
0 1 0 0 0 0 0 0
0 1 0 1 1 0 1 0
0 1 1 0 0 0 0 1
0 1 1 1 X X X X
1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 1 X X X X
1 1 0 0 0 1 0 0
1 1 0 1 1 0 1 0
1 1 1 0 0 0 0 1
1 1 1 1 X X X X

18 STATEGRAPHS/FSM
Page 52

ECE 238L © 2006

Basic Car Wash Implementation

D Q

D Q

Q1N1

CLK

Q0N0

CLK

Q0

Q1
TDONE’

TOKEN
Q1’
Q0’

SPRAY

CLRT

This is what you get from a KMap solution

18 STATEGRAPHS/FSM
Page 53

ECE 238L © 2006

Simplified State Graph

S_SPRAY

TOKEN

CLRT

TOKEN’

S_IDLE

TDONE’

TDONE

SPRAY

Clear timer while waiting for a
token and eliminate a state

TOKEN TDONE CS NS CLRT SPRAY

0 - S_IDLE S_IDLE 1 0
1 - S_IDLE S_SPRAY 1 0
- 0 S_SPRAY S_SPRAY 0 1
- 1 S_SPRAY S_IDLE 0 1

18 STATEGRAPHS/FSM
Page 54

ECE 238L © 2006

Simplified Car Wash Implementation

State Encoding: S_IDLE = 0, S_SPRAY = 1

NS = CS’•TOKEN + CS•TDONE’
CLRT = CS’
SPRAY = CS

CS

NS

TDONE’

SPRAYD Q
CS

CS’
TOKEN

CLRT
CLK

18 STATEGRAPHS/FSM
Page 55

ECE 238L © 2006

A Fancy Car Wash Controller

• Two types of washes:
– Regular wash (spray only) = 1 token
– Deluxe wash (spray, soap, spray) = 2 tokens

• Customer:
– Inserts 1 token and pushes START for Regular
– Inserts 2 tokens for Deluxe

18 STATEGRAPHS/FSM
Page 56

ECE 238L © 2006

S3

TOKEN’

CLRT1

S0

S1

TOKEN

TOKEN’ • START’

TOKEN • START’

S2 T1DONE’SPRAY, CLRT2

T1DONE

T2DONE’

S4

T2DONE

SOAP, CLRT1

SPRAYT1DONE’

T1DONE

START

Straightforward process to
write transition table and
reduce to gates

Creativity in FSM design
is designing the initial
state graph…

18 STATEGRAPHS/FSM
Page 57

ECE 238L © 2006

Enhancements to Fancy Controller

18 STATEGRAPHS/FSM
Page 58

ECE 238L © 2006

S3

TOKEN’

CLRT1,
ACCEPTCOIN

S0

S1

TOKEN

TOKEN’ • START’

TOKEN • START’

S2 T1DONE’SPRAY, CLRT2

T1DONE

T2DONE’

S4

T2DONE

SOAP, CLRT1

SPRAYT1DONE’

T1DONE

START

There is no way to cause coinbox
to refuse tokens. Coins inserted
after wash commences are
presumably kept by the machine.

Let’s add an ACCEPTCOIN output
to control when coinbox will
accept tokens…

ACCEPTCOIN

18 STATEGRAPHS/FSM
Page 59

ECE 238L © 2006

S3

TOKEN’

CLRT1

S0

S1

TOKEN

TOKEN’ • START’

TOKEN • START’

S2 T1DONE’SPRAY, CLRT2

T1DONE

T2DONE’

S4

T2DONE

SOAP, CLRT1

SPRAYT1DONE’

T1DONE

START

ACCEPTCOIN

If customer pushes START at
precisely the same time as he
inserts another TOKEN, the
FSM will take the token, but
deliver a Regular Wash.

That is, START has
precedence over TOKEN

ACCEPTCOIN

18 STATEGRAPHS/FSM
Page 60

ECE 238L © 2006

S3

TOKEN’

CLRT1

S0

S1

TOKEN

TOKEN’ • START’

TOKEN

S2 T1DONE’SPRAY, CLRT2

T1DONE

T2DONE’

S4

T2DONE

SOAP, CLRT1

SPRAYT1DONE’

T1DONE

START•TOKEN’

ACCEPTCOIN

This changes the precedence so
the machine won’t steal the
second token, but will give a
deluxe wash in this case.

ACCEPTCOIN

18 STATEGRAPHS/FSM
Page 61

ECE 238L © 2006

Completeness and Conflict Revisited

• State S1 is a typical problem spot

• Carefully analyze the state graph to ensure no
conflicts exist and that all cases covered.

18 STATEGRAPHS/FSM
Page 62

ECE 238L © 2006

Resetting State Machines

• Ability to reset the FSM is essential for
testing most systems

• Always include a reset capability
– Add CLR signal to state graph
– Use flip flops with clear inputs

– Either method will work

18 STATEGRAPHS/FSM
Page 63

ECE 238L © 2006

Another Example

An Electronic Key Lock

18 STATEGRAPHS/FSM
Page 64

ECE 238L © 2006

1) There are 10 keypads 0-9
2) The unlock sequence is 7..8..9
3) When a pad is pushed the signal for that number is asserted
4) When any of the keypads are pushed a PUSHED signal is asserted
5) If you push a number out of sequence, you get an error indicator

and you get to start over
6) After three wrong tries, you must wait ½ hr. before trying again
7) If you entered the correct sequence, the lock unlocks.
8) Once the lock has opened, nothing happens until it is manually

locked again.

Inputs: Keypads signals 0-9 Outputs: INC
PUSHED signal CLRTIMER
ECNT3 (error count = 3) CLRCNTR
WAITDONE ERROR
LOCKED UNLOCK

Example: Electronic Key Lock

18 STATEGRAPHS/FSM
Page 65

ECE 238L © 2006

ECNT3’

A

F E

CB

D

Start

PUSHED•7

PUSHED•7’/
INC

PUSHED•9/ UNLOCK

ERRORECNT3/ CLRTIMER

WAITDONE’

WAITDONE/
CLRCNTR

PUSHED’

PUSHED’

PUSHED’

LOCKED’

LOCKED/ CLRCNTR

PUSHED•8

PUSHED•8’/
INC

PUSHED•9’/
INC

18 STATEGRAPHS/FSM
Page 66

ECE 238L © 2006

Let’s create the transition table…

ECNT3’

A

F E

CB

D

Start
PUSHED•7

PUSHED•7’/
INC

PUSHED•9/ UNLOCK

ERRORECNT3/ CLRTIMERWAITDONE’

WAITDONE/
CLRCNTR

PUSHED’

PUSHED’
PUSHED’

LOCKED’

LOCKED/ CLRCNTR

PUSHED•8

PUSHED•8’/
INC PUSHED•9’/

INC

PUSHED 7 8 9 ECNT3 WAITDONE LOCKED STATE NEXTSTATE INC ERROR CLRCNTR CLRTIMER UNLOCK

0 - - - - - - A A 0 0 0 - 0
1 0 - - - - - A E 1 0 0 - 0
1 1 - - - - - A B 0 0 0 - 0
0 - - - - - - B B 0 0 0 - 0
1 - 0 - - - - B E 1 0 0 - 0
1 - 1 - - - - B C 0 0 0 - 0
0 - - - - - - C C 0 0 0 - 0
1 - - 0 - - - C E 1 0 0 - 0
1 - - 1 - - - C D 0 0 - - 1
- - - - - - 0 D D - 0 - - 0
- - - - - - 1 D A 0 0 1 - 0
- - - - 0 - - E A 0 1 0 - 0
- - - - 1 - - E F - 1 0 1 0
- - - - - 0 - F F - 0 0 0 0
- - - - - 1 - F A 0 0 1 0 0

18 STATEGRAPHS/FSM
Page 67

ECE 238L © 2006

PUSHED 7 8 9 ECNT3 WAITDONE LOCKED STATE NEXTSTATE INC ERROR CLRCNTR CLRTIMER UNLOCK

0 0 0 0 0 0 0 A A 0 0 0 - 0
0 0 0 0 0 0 1 A A 0 0 0 - 0
0 0 0 0 0 1 0 A A 0 0 0 - 0
0 0 0 0 0 1 1 A A 0 0 0 - 0
0 0 0 0 1 0 0 A A 0 0 0 - 0
0 0 0 0 1 0 1 A A 0 0 0 - 0
0 0 0 0 1 1 0 A A 0 0 0 - 0
0 0 0 0 1 1 1 A A 0 0 0 - 0
0 0 0 1 0 0 0 A A 0 0 0 - 0
0 0 0 1 0 0 1 A A 0 0 0 - 0
0 0 0 1 0 1 0 A A 0 0 0 - 0
0 0 0 1 0 1 1 A A 0 0 0 - 0
0 0 0 1 1 0 0 A A 0 0 0 - 0
0 0 0 1 1 0 1 A A 0 0 0 - 0
0 0 0 1 1 1 0 A A 0 0 0 - 0

Now let’s expand State A

…

18 STATEGRAPHS/FSM
Page 68

ECE 238L © 2006

This is going to get ugly fast…

• 7 inputs + 3 state bits = 1024 rows in TT

• Can you do a 10-variable KMap?

• There is a technique called One-Hot state
machines we can use instead…

	Binary Counter State Graph
	Design Procedure Using State Graphs
	State Graphs With Moore Outputs
	Another SG With A Moore Output
	State Graphs and Mealy Outputs
	Properly Formed State Graphs
	An Incomplete State Graph
	An Incomplete State Graph
	Complete State Graphs
	Checking for Completeness
	Alternate Check for Completeness
	Additional Completeness Considerations
	Conflicts in State Graphs
	Conflicts in State Graphs
	Conflicts in State Graphs
	Conflicts in State Graphs
	Conflict-Free State Graphs
	Checking for Conflicts
	Alternate Check for Conflicts
	Additional Conflict Considerations
	Summary - Properly Formed State Graphs
	Summary – SG’s vs. TT’s
	Finite State Machines
	State Machine Concepts
	Counters as State Machines
	State Machines
	State Encodings
	A State Machine Controller for a Photocopier
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	A Sequence Detector FSM
	Implementing the Sequence Detector FSM
	Sequence Detector Implementation
	A Problem With the Sequence Detector
	Improved Sequence Detector
	Improved Detector Timing Diagram
	Mealy Version of Sequence Detector
	Mealy Version Timing Diagram
	Simplified Mealy Sequence Detector
	Example FSM’s
	Basic Car Wash FSM Operation
	Basic Car Wash FSM SG
	Basic Car Wash Implementation
	Simplified State Graph
	Simplified Car Wash Implementation
	A Fancy Car Wash Controller
	Enhancements to Fancy Controller
	Completeness and Conflict Revisited
	Resetting State Machines
	Another Example
	Example: Electronic Key Lock
	This is going to get ugly fast…

