One-Hot Encoded Finite State Machines

Example State Machine

InA	InB	CS	NS	Ζ
0	-	А	Α	0
1	-	А	В	0
0	-	В	А	1
1	-	В	С	1
-	0	С	С	1
-	1	С	D	1
-	-	D	А	0
			-	
InA	InB	▼ CS	NS	Z
InA 0	InB -	CS 00	NS 00	Z 0
InA 0 1	InB - -	CS 00 00	NS 00 01	Z 0 0
InA 0 1 0	InB - -	CS 00 00 01	NS 00 01 00	Z 0 0 1
InA 0 1 0 1	InB - - -	CS 00 00 01 01	NS 00 01 00 10	Z 0 0 1 1
InA 0 1 0 1 -	InB - - - 0	CS 00 00 01 01 10	NS 00 01 00 10 10	Z 0 1 1 1
InA 0 1 0 1 -	InB - - - 0 1	CS 00 00 01 01 10 10	NS 00 01 00 10 10 11	Z 0 1 1 1

Example Machine Implementation

N1 = Q1•Q0' + Q1'•Q0•InA N0 = Q1•Q0'•InB + Q1'•Q0'•InA Z = Q1'•Q0 + Q1•Q0'

> 9 gates 21 gate inputs

CLK

Choose a Different Encoding

• A=1000, B=0100, C=0010, D=0001

InA	InB	CS	NS	Ζ
0	-	1000	1000	0
1	-	1000	0100	0
0	-	0100	1000	1
1	-	0100	0010	1
-	0	0010	0010	1
-	1	0010	0001	1
-	-	0001	1000	0

This is called a *one-hot* encoding.

Only one state bit is on at a time

InA	InB	CS	NS	Ζ
0	-	1	1000	0
1	-	1	0100	0
0	-	-1	1000	1
1	-	-1	0010	1
-	0	1-	0010	1
-	1	1-	0001	1
-	-	1	1000	0

Because of the state encodings, there are many illegal states.

This TT with all these input don't cares is the result

One-Hot Encoding Results

- Will require 4 flip flops
 - One per state
 - Call the current state bits A, B, C, and D
 - Call the next state bits NA, NB, NC, and ND

ECE 238L

One-Hot Implementation

9 gates 19 gate inputs С

D

One-Hot - **Observations**

- Choosing a one-hot encoding results in many, many don't cares in transition table
- Minimization results in simpler IFL and OFL
- Can do one-hot design by inspection
 <u>without using transition tables...</u>

Another One-Hot Example

State	Encoding
А	100
В	010
С	001

State Encoding and Structure

With one-hot encoding, each state has its own flip flop.

Note: 'A' is the name of a state. It is also the name of the wire coming out from the flip flop for state 'A'.

The same holds true for states 'B' and 'C'

When is A the next state?

Look at the arcs entering state A

$$NA = A \bullet x' + B \bullet y'z + C$$

When is A the next state?

Look at the arcs entering state A

$$NA = A \bullet x' + B \bullet y'z + C$$

When is A the next state?

Look at the arcs entering state A

$$NA = A \bullet x' + B \bullet y'z + C$$

When is A the next state?

Look at the arcs entering state A

$$NA = A \bullet x' + B \bullet y'z + C$$

Similar reasoning leads to: NB = A•x + B•y'z' NC = B•y

The Key Lock Problem - One-Hot Version

 $A + = (PUSHED' \bullet A) + (ECNT3' \bullet E)$ $+ (WAITDONE \bullet F)$ $+ (LOCKED \bullet D)$

A+ = (PUSHED'•A) + (ECNT3'•E) + (WAITDONE•F) + (LOCKED•D) B+ = (PUSHED'•B)+(PUSHED•7•A)

- $A + = (PUSHED' \bullet A) + (ECNT3' \bullet E)$ $+ (WAITDONE \bullet F)$ $+ (LOCKED \bullet D)$ $B + = (PUSHED' \bullet B) + (PUSHED \bullet 7 \bullet A)$ $C = (PUSHED' \bullet C) + (PUSHED \bullet 7 \bullet A)$ $C = (PUSHED' \bullet C) + (PUSHED \bullet 7 \bullet A)$ $C = (PUSHED' \bullet C) + (PUSHED \bullet 7 \bullet A)$ $C = (PUSHED' \bullet C) + (PUSHED \bullet 7 \bullet A)$ $C = (PUSHED' \bullet C) + (PUSHED • 7 \bullet A)$ C = (PUSHED' • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED • 7 • A)C = (PUSHED • C) + (PUSHED •
- $C + = (PUSHED' \bullet C) + (PUSHED \bullet 8 \bullet B)$

A+ = (PUSHED'•A) + (ECNT3'•E)
 + (WAITDONE•F)
 + (LOCKED•D)
B+ = (PUSHED'•B)+(PUSHED•7•A)
C+ = (PUSHED'•C)+(PUSHED•8•B)
D+ = (LOCKED'•D)+(PUSHED•9•C)

A+ = (PUSHED'•A) + (ECNT3'•E) + (WAITDONE•F) + (LOCKED•D) B+ = (PUSHED'•B)+(PUSHED•7•A) C+ = (PUSHED'•C)+(PUSHED•8•B) D+ = (LOCKED'•D)+(PUSHED•9•C) E+ = (PUSHED•7'•A) + (PUSHED•8'•B) + (PUSHED•9'•C)

A+ = (PUSHED'•A) + (ECNT3'•E) + (WAITDONE•F) + (LOCKED•D) B+ = (PUSHED'•B)+(PUSHED•7•A) C+ = (PUSHED'•C)+(PUSHED•8•B) D+ = (LOCKED'•D)+(PUSHED•9•C) E+ = (PUSHED•7'•A) + (PUSHED•7'•A) + (PUSHED•8'•B) + (PUSHED•9'•C) F+ = (ECNT3•E) + (WAITDONE'•F)

ERROR = E INC = (PUSHED•7'•A) + (PUSHED•8'•B) + (PUSHED•9'•C)

ERROR = E INC = (PUSHED•7'•A) + (PUSHED•8'•B) + (PUSHED•9'•C) CLRTIMER = ECNT3•E CLRCNTR = (WAITDONE•F) + ((LOCKED•D)

+ (PUSHED \bullet 8' \bullet B)

+ (PUSHED•9'•C)

+ ((LOCKED•D)

Other State Encoding Techniques

- You have learned the 2 extremes
 - Fully encoded (8 states \Leftrightarrow 3 state bits)
 - One-hot encoded (8 states \Leftrightarrow 8 state bits)
- A range of options exist in between
- A good choice of encoding
 - Can minimize IFL and OFL complexity
 - Algorithms have been developed for this...
 - Beyond the scope of this class