
Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.
Terms of Use

(Hyperlinks are active in View Show mode)

Chapter 10 – Computer
Design Basics

Part 2 – A Simple Computer

Logic and Computer Design Fundamentals

Chapter 10 Part 2 2

Overview

Part 1 – Datapaths
• Introduction
• Datapath Example
• Arithmetic Logic Unit (ALU)
• Shifter
• Datapath Representation and Control Word

Part 2 – A Simple Computer
• Instruction Set Architecture (ISA)
• Single-Cycle Hardwired Control

PC Function
Instruction Decoder
Example Instruction Execution

Part 3 – Multiple Cycle Hardwired Control
• Single Cycle Computer Issues
• Sequential Control Design

Chapter 10 Part 2 3

Instruction Set Architecture (ISA) for
Simple Computer (SC)

A programmable system uses a sequence of instructions
to control its operation
An typical instruction specifies:

• Operation to be performed
• Operands to use, and
• Where to place the result, or
• Which instruction to execute next

Instructions are stored in RAM or ROM as a program
The addresses for instructions in a computer are
provided by a program counter (PC) that can

• Count up
• Load a new address based on an instruction and, optionally,

status information

Chapter 10 Part 2 4

Instruction Set Architecture (ISA) (continued)

The PC and associated control logic are part of
the Control Unit
Executing an instruction - activating the
necessary sequence of operations specified by
the instruction
Execution is controlled by the control unit and
performed:

• In the datapath
• In the control unit
• In external hardware such as memory or

input/output

Chapter 10 Part 2 5

ISA: Storage Resources

The storage resources are "visible" to the programmer at the
lowest software level (typically, machine or assembly language)

Storage resources
for the SC =>
Separate instruction and
data memories imply
"Harvard architecture"
Done to permit use of
single clock cycle per
instruction implementation
Due to use of "cache" in
modern computer
architectures, is a fairly
realistic model

Instruction
memory
215x 16

Data
memory
215 x16

Register file
8 x 16

Program counter
(PC)

Chapter 10 Part 2 6

ISA: Instruction Format

A instruction consists of a bit vector
The fields of an instruction are subvectors
representing specific functions and having
specific binary codes defined
The format of an instruction defines the
subvectors and their function
An ISA usually contains multiple formats
The SC ISA contains the three formats
presented on the next slide

Chapter 10 Part 2 7

ISA: Instruction Format

The three formats are: Register, Immediate, and Jump and Branch
All formats contain an Opcode field in bits 9 through 15.
The Opcode specifies the operation to be performed
More details on each format are provided on the next three slides

(c) Jump and Branch

(a) Register

Opcode Destination
register (DR)

Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

(b) Immediate

Opcode Destination
register (DR)

Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

Opcode Source reg-
ister A (SA)

15 9 8 6 5 3 2 0
Address (AD)

(Right)
Address (AD)

(Left)

Chapter 10 Part 2 8

ISA: Instruction Format (continued)

This format supports instructions represented by:
• R1 ← R2 + R3
• R1 ← sl R2

There are three 3-bit register fields:
• DR - specifies destination register (R1 in the examples)
• SA - specifies the A source register (R2 in the first

example)
• SB - specifies the B source register (R3 in the first

example and R2 in the second example)
Why is R2 in the second example SB instead of
SA?

• The source for the shifter in our datapath to be used in
i l t ti i B B th th B A

(a) Register

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

Source reg-
ister B (SB)

15 9 8 6 5 3 2 0

Chapter 10 Part 2 9

ISA: Instruction Format (continued)

(b) Immediate

Opcode
Destination

register (DR)
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Operand (OP)

This format supports instructions described by:
• R1 ← R2 + 3

The B Source Register field is replaced by an
Operand field OP which specifies a constant.
The Operand:

• 3-bit constant
• Values from 0 to 7

The constant:
• Zero-fill (on the left of) the Operand to form 16-bit

constant
• 16-bit representation for values 0 through 7

Chapter 10 Part 2 10

ISA: Instruction Format (continued)

This instruction supports changes in the sequence of
instruction execution by adding an extended, 6-bit,
signed 2s-complement address offset to the PC value
The 6-bit Address (AD) field replaces the DR and SB
fields

• Example: Suppose that a jump is specified by the Opcode and
the PC contains 45 (0…0101101) and Address contains – 12
(110100). Then the new PC value will be:
0…0101101 + (1…110100) = 0…0100001 (45 + (– 12) = 33)

The SA field is retained to permit jumps and branches
on N or Z based on the contents of Source register A

(c) Jump and Branch

Opcode
Source reg-
ister A (SA)

15 9 8 6 5 3 2 0

Address (AD)
(Right)

Address (AD)
(Left)

Chapter 10 Part 2 11

ISA: Instruction Specifications

The specifications provide:
• The name of the instruction
• The instruction's opcode
• A shorthand name for the opcode called a

mnemonic
• A specification for the instruction format
• A register transfer description of the

instruction, and
• A listing of the status bits that are meaningful

during an instruction's execution (not used in the
architectures defined in this chapter)

Chapter 10 Part 2 12

ISA: Instruction Specifications (continued)

Instruction Specifications for the SimpleComputer - Part 1

Instruction Opcode Mnemonic Format Description
St atus
Bits

Move A 0000000 MOVA RD ,RA R[DR] ← R[SA] N, Z
Increment 0000001 INC RD,RA R[DR] ← R[SA] + 1 N, Z
Add 0000010 ADD RD,RA,RB R[DR] ← R[SA] + R[SB] N, Z
Subtract 0000101 SUB RD,RA,RB R[DR] ← R[SA] − [SB] N, Z
Decrement 0000110 DEC RD,RA R[DR] ← R[SA] − 1 N, Z
AND 0001000 AND RD,RA,RB R[DR] ← R[SA] ∧ R[SB] N, Z
OR 0001001 OR RD,RA,RB R[DR] ← R[SA] ∨ R[SB] N, Z
Exclusive OR 0001010 XOR RD,RA,RB R[DR] ← R[SA] ⊕ R[SB] N, Z
NO T 0001011 NO T RD,RA R[DR] ← N, ZR[SA]

R

Chapter 10 Part 2 13

ISA: Instruction Specifications (continued)

Instruction Specifications for the Simple Computer - Part 2

Instr uction Opcode Mnemonic Format Description
St atus
Bits

Move B 0001100 MOVB RD,RB R[DR] ← R[SB]
Shift Right 0001101 SHR RD,RB R[DR] ← sr R[SB]
Shift Left 0001110 SHL RD,RB R[DR] ← sl R[SB]
Load Immediate 1001100 LDI RD, OP R[DR] ← zf OP
Add Immediate 1000010 ADI RD,RA,OP R[DR] ← R[SA] + zf OP
Load 0010000 LD RD,RA R[DR] ← M[SA]
Store 0100000 ST RA,RB M[SA] ← R[SB]
Branch on Zero 1100000 BRZ RA,AD if (R[SA] = 0) PC ← PC + se AD
Branch on Negative 1100001 BRN RA,AD if (R[SA] < 0) PC ← PC + se AD
Jump 1110000 JMP RA PC ← R[SA]

Chapter 10 Part 2 14

ISA:Example Instructions and Data in
Memory
Memory Repr esentation of Instructions and Data

Deciimal
Address Memory Contents

Decimal
Opcode Other Fields Operation

25 0000101 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 ← R2 − R3

35 0100000 000 100 101 32 (Store) SA:4, SB:5 M[R4] ← R5

45 1000010 010 111 011 66 (Add
Immediate)

DR: 2, SA:7, OP:3 R2 ← R7 + 3

55 1100000 101 110 100 96 (Branch
on Zero)

AD: 44, SA:6 If R6 = 0,
PC ← PC − 20

70 00000000011000000 Data = 192. After execution of instruction in 35,
Data = 80.

Chapter 10 Part 2 15

Single-Cycle Hardwired Control

Based on the ISA defined, design a computer
architecture to support the ISA
The architecture is to fetch and execute each instruction
in a single clock cycle
The datapath from Figure 10-11 will be used
The control unit will be defined as a part of the design
The block diagram is shown on the next slide

Chapter 10 Part 2 16

Bus A Bus B
Address out

Data out MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA
AA

Constant
in

BA

MB

FS
V
C
N
Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Chapter 10 Part 2 16

Chapter 10 Part 2 17

The Control Unit

The Data Memory has been attached to the Address
Out and Data Out and Data In lines of the Datapath.
The MW input to the Data Memory is the Memory
Write signal from the Control Unit.
For convenience, the Instruction Memory, which is not
usually a part of the Control Unit is shown within it.
The Instruction Memory address input is provided by
the PC and its instruction output feeds the Instruction
Decoder.
Zero-filled IR(2:0) becomes Constant In
Extended IR(8:6) || IR(2:0) and Bus A are address
inputs to the PC.
The PC is controlled by Branch Control logic

Chapter 10 Part 2 18

PC Function

PC function is based on instruction specifications
involving jumps and branches taken from Slide 13:

In addition to the above register transfers, the PC must
also implement: PC ← PC + 1
The first two transfers above require addition to the PC
of: Address Offset = Extended IR(8:6) || IR(2:0)
The third transfer requires that the PC be loaded with:
Jump Address = Bus A = R[SA]
The counting function of the PC requires addition to
the PC of 1

Branchon Zero BRZ if (R[SA] =0) PC
←

PC+ se AD
Branch on Negative BRN if (R[SA] <0) PC PC+ se AD
Jump JMP PC R[SA]

←

←

Chapter 10 Part 2 19

PC Function (continued)

Branch Control determines the PC transfers based on five
of its inputs defined as follows:

• N,Z – negative and zero status bits
• PL – load enable for the PC
• JB – Jump/Branch select: If JB = 1, Jump, else Branch
• BC – Branch Condition select: If BC = 1, branch for N = 1, else

branch for Z = 1.

The above is summarize by the following table:

Sufficient information is provided here to design the PC

PC Operation PL JB BC
Count Up 0 X X
Jump 1 1 X
Branch on Negative (else Count Up) 1 0 1
Branch on Zero (else Count Up) 1 0 0

Chapter 10 Part 2 20

Instruction Decoder

The combinational instruction decoder converts the
instruction into the signals necessary to control all parts of
the computer during the single cycle execution
The input is the 16-bit Instruction
The outputs are control signals:

• Register file addresses DA, AA, and BA,
• Function Unit Select FS
• Multiplexer Select Controls MB and MD,
• Register file and Data Memory Write Controls RW and MW, and
• PC Controls PL, JB, and BC

The register file outputs are simply pass-through signals:
DA = DR, AA = SA, and BA = SB

Determination of the remaining signals is more complex.

Chapter 10 Part 2 21

Instruction Decoder (continued)

The remaining control signals do not depend on the
addresses, so must be a function of IR(13:9)
Formulation requires examining relationships between
the outputs and the opcodes given in Slides 12 and 13.
Observe that for other than branches and jumps, FS =
IR(12:9)
This implies that the other control signals should
depend as much as possible on IR(15:13) (which
actually were assigned with decoding in mind!)
To make some sense of this, we divide instructions into
types as shown in the table on the next page

Chapter 10 Part 2 22

Instruction Decoder (continued)

Truth Table for Instruction Decoder Logic

Instruction Function Type

Instruction Bits Control Word Bits

15 14 13 9 MB MD RW MW PL JB BC

Function unit operations using
registers

0 0 0 X 0 0 1 0 0 X X

Memory read 0 0 1 X 0 1 1 0 0 X X

Memory write 0 1 0 X 0 X 0 1 0 X X

Function unit operations using
register and constant

1 0 0 X 1 0 1 0 0 X X

Conditional branch on zero (Z) 1 1 0 0 X X 0 0 1 0 0

Conditional branch on negative (N) 1 1 0 1 X X 0 0 1 0 1

Unconditional Jump 1 1 1 X X X 0 0 1 1 X

Chapter 10 Part 2 23

Instruction Decoder (continued)

The types are based on the blocks controlled and the seven signals to
be generated; types can be divided into two groups:

• Datapath and Memory Control (First 4 types)
• PC Control (Last 3 types)

In Datapath and Memory Control blocks controlled are considered:
• Mux B (1st and 4th types)
• Memory and Mux D (2nd and 3rd types)
• By assigning codes with no or only one 1 for these, implementation of

MB, MD, RW and MW are simplified.
In Control Unit more of a bit setting approach was used:

• Bit 15 = Bit 14 = 1 were assigned to generate PL
• Bit 13 values were assigned to generate JB.
• Bit 9 was use as BC which contradicts FS = 0000 needed for branches.

To force FS(6) to 0 for branches, Bit 9 into FS(6) is disabled by PL.
Also, useful bit correlations between values in the two groups were
exploited in assigning the codes.

Chapter 10 Part 2 24

Instruction Decoder (continued)

The end result by use of the types, careful assignment of
codes, and use of don't cares, yields very simple logic:
This completes the
design of most of the
essential parts of
the single-cycle
simple computer

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

Chapter 10 Part 2 25

Example Instruction Execution

Decoding, control inputs and paths shown
for ADI, RD and BRZ on next 6 slides

[][]

Six Instructions for the Single-Cycle Comp uter

Operation
code

Symbol ic
name Format Description Function MBMD RW MW PL JB BC

1000010 ADI Immediate Add immediate
operand

1 0 1 0 0 0 0

0010000 LD Register Load memory
content into
register

0 1 1 0 0 1 0

0100000 ST Register Store register
content in
memory

0 1 0 1 0 0 0

0001110 SL Register Shift left 0 0 1 0 0 1 0

0001011 NOT Register Complement
register

0 0 1 0 0 0 1

1100000 BRZ Jump/Branch If R [SA] = 0, branch
to PC + se AD

If R[SA] = 0,
,

If R[S A] ≠ 0,

1 0 0 0 1 0 0

R DR[] R SA[] zf I(2:0)+←

R DR[] M R SA[][]←

M R SA R SB[]←

R DR[] sl R SB[]←

R DR[] R SA[]←

PC PC se AD+←
PC PC 1+←

Chapter 10 Part 2 26

Decoding for ADI

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

1 0 0 0 0 1 0

1 10 0 1 0 0 00 0 0

Chapter 10 Part 2 27

Bus A Bus B
Address out

Data out MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA
AA

Constant
in

BA

MB

FS
V
C
N
Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for ADI

1 1

0
0

1
0 0 00 0 0

0 0 1 0

1

0

1

0

0 0 0

+

No Write

Increment
PC

Chapter 10 Part 2 28

Decoding for LD

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

0 0 1 0 0 0 0

0 10 0 0 0 1 00 1 0

Chapter 10 Part 2 29

Bus A Bus B
Address out

Data out MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA
AA

Constant
in

BA

MB

FS
V
C
N
Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for LD

0 1

0
0

0
0 1 00 1 0

0 0 0 0

0

1

1

0

0 1 0

No Write

Increment
PC

Chapter 10 Part 2 30

Decoding for BRZ

19–17

DA

16–14

AA

13–11

BA

10

MB

9–6

FS

5

MD

4

RW

3

MW

2

PL

1

JB

0

BC

Instruction

Opcode DR SA SB

Control word

15 14 13 12 11 10 9 8–6 5–3 2–0

1 1 0 0 0 0 0

1 00 0 0 0 0 10 0 0

Chapter 10 Part 2 31

Bus A Bus B
Address out

Data out MW

Data in

MUX B
1 0

MUX D
0 1

DATAPATH

RW
DA
AA

Constant
in

BA

MB

FS
V
C
N
Z

Function
unit

A B

F

MD
Bus D

IR(2:0)

Data in Address

Data
memory

Data out

Register
file

D

A B

Instruction
memory

Address

Instruction

Zero fill

D
A

B
A

A
A

F
S

M
D

R
W

M
W

M
B

Instruction decoder

J
B

Extend

L
P B

C

Branch
Control

V
C
N
Z

J
BL

P B
C

IR(8:6) || IR(2:0)

PC

CONTROL

Control Inputs and Paths for BRZ

1 0

0
0

0
0 0 10 0 0

0 0 0 0

1

0

0

0

1 0 0

No Write

Branch on
Z

No Write

Chapter 10 Part 2 32

Terms of Use

© 2004 by Pearson Education,Inc. All rights reserved.
The following terms of use apply in addition to the standard Pearson
Education Legal Notice.
Permission is given to incorporate these materials into classroom
presentations and handouts only to instructors adopting Logic and
Computer Design Fundamentals as the course text.
Permission is granted to the instructors adopting the book to post these
materials on a protected website or protected ftp site in original or
modified form. All other website or ftp postings, including those
offering the materials for a fee, are prohibited.
You may not remove or in any way alter this Terms of Use notice or
any trademark, copyright, or other proprietary notice, including the
copyright watermark on each slide.
Return to Title Page

http://www.pearsoned.com/legal/index.htm

	Overview
	Instruction Set Architecture (ISA) for Simple Computer (SC)
	Instruction Set Architecture (ISA) (continued)
	ISA: Storage Resources
	ISA: Instruction Format
	ISA: Instruction Format
	ISA: Instruction Format (continued)
	ISA: Instruction Format (continued)
	ISA: Instruction Format (continued)
	ISA: Instruction Specifications
	ISA: Instruction Specifications (continued)
	ISA: Instruction Specifications (continued)
	ISA:Example Instructions and Data in Memory
	Single-Cycle Hardwired Control
	The Control Unit
	PC Function
	PC Function (continued)
	Instruction Decoder
	Instruction Decoder (continued)
	Instruction Decoder (continued)
	Instruction Decoder (continued)
	Instruction Decoder (continued)
	Example Instruction Execution
	Decoding for ADI
	Decoding for LD
	Decoding for BRZ
	Terms of Use

