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LATCH

Storage
Bi-stability

Latches
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Sequential Circuits

• The output of a Combinatorial Circuit depends 
only on the current inputs

• The output of a Sequential Circuit can 
remember something about the past
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Bi-Stability = Key to Memory

1 00

0 11

This is a stable state –
it will sit like this forever

This is also a stable state –
it will sit like this forever

There are 2 stable states -
a bi-stable circuit…
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SR Latch – A Bi-Stable Circuit

S

R
Q

Q’

0

0

1

0

S

R
Q

Q’

0

0

0

1

This is a stable state –
it will sit like this forever

This is also a stable state –
it will sit like this forever
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SR Latch Transition Table
S R Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 N/A
1 1 1 N/A

No change

Reset it

Set it

S

R

Q

Q’
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Symbology

S

R

Q

Q’

R   Q

S   Q’
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GLATCH

Gated Latches
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The Gated SR Latch
R

S

Q

Q’

GATE

GS

GR When GATE=‘0’ 
GR=GS=‘0’

latch cannot be modified

When GATE=‘1’
GR=R, GS=S 

works like an SR latch

A Latch

The GATE signal allows us to control
when

the latch will be loaded with a new value
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Gated SR Latch

• Sometimes known as a loadable SR latch
– Can be loaded with new value

R

S

Q

Q’

GATE

GS

GR
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The Gated D Latch
D

Q’

Q

GATE

GATE D Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1Q+ = GATE•D + GATE’•Q

When GATE=‘1’ Q follows D  (storage)
When GATE=‘0’ Q retains old value (retention)



15 COUNTERS
Page 12

ECE238L © 2006

Gated D Latches

• Sometimes called a transparent latch
– When GATE=‘1’:

• Q follows D
• D is reflected on Q output

• Allows us to control when to store new data 
into latch
– D = data to be stored
– GATE = control signal
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Symbology

D   Q

Gate

D

Q

GATE

D   Q

Load

or…
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MSFF

Master/Slave Flip Flops
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A Master/Slave Flip Flop (D Type)
Gated D latch(master) Gated D latch (slave)

D   Q

Gate

D   Q

Gate

D

GATE

Q
Q1

Either:
The master is loading (the master in on)

or
The slave is loading (the slave is on)

But never both at the same time…
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Alternative Flip Flops

T
JK
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Toggle Flip Flop

T Q Q+

0 0 0
0 1 1
1 0 1
1 1 0

No
Action

Toggle

T   Q

CLK

QT

Q+ = T’•Q + T•Q’ = T + Q

Clock edge is assumed
in this transition table…
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JK Flip Flop

J K Q Q+

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

No Change

Reset

Set

Toggle

J   Q
K      

CLK

QJ
K

Q+ = K’•Q + J•Q’Kind of a cross between
a SR FF and a T FF
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Why Alternative FF’s?

• With discrete parts (TTL family)
– JK or T FF’s could reduce gate count for the 

input forming logic 
– Extensively used

• With VLSI IC’s and FPGA’s
– JK or T FF’s must be built from DFF+gates
– Larger, slower than a DFF
– Not used
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Flip Flops With Additional Control 
Inputs
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D

CLK

Q

Q’

What is this?

Enable

A falling edge triggered, D-type FF with enable

Master only loads when CLK=Enable=‘1’
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D

CLK

Q

Q’

What is this?

Set

A falling edge triggered, D-type FF with an asynchronous set

If Set=1 then Q=>1, regardless of CLK or D
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D

CLK

Q

Q’

What is this?

A falling edge triggered, D-type FF with a synchronous set

If Set=1 then Q=>1 on the next falling edge of the clock, 
regardless of D

Set
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Flip Flops With Additional Control Inputs

• A variety of FF’s have been made over the 
years

• They contain combinations of these inputs:
– Enable
– Set
– Reset

• The Set and Reset can be either:
– Asynchronous (independent of CLK)
– Synchronous (work only on CLK edge)
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Flip Flop Timing Characteristics
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Clock-to-Q Time (tCLK Q)

D

CLK

Q

Q’

tCLK Q = tNOT + tAND + 2 x tNOR

The output does not change instantaneously…

Why 2 x tNOR?
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Setup Time (tsetup)
D

CLK

Q

Q’

tsetup = tNOT + tAND + 2 x tNOR

The input has to get there early enough
to set the master latch before

the clock turns off…
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D

CLK

Q

Q’

Same setup time as before

Clock is delayed through the NOT gate

Rising Edge FF Setup Time (tSETUP)
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Falling Edge Hold Time (thold)
D

CLK

Q

Q’

thold = 0ns (AND gates turn off immediately)

You have to keep the old D value there until the AND
gates are shut off… (but no longer)
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Rising Edge Hold Time (thold)D

CLK

Q

Q’

thold = tNOT

You have to keep the old D value there until the AND
gates are shut off…
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Timing of a Synchronous System 

CLK

D   Q

CLK

D   QInput
Forming
Logic

Input
Forming
Logic

time

Q D

CLK

Q

D

tCLK Q tIFL tSETUP

tCYCLE >= 
tCLK Q + 
tIFL + 
tSETUP
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D   QD   QD   Q

Example of a Synchronous System

D   Q
+1

Circuit

4

CLK

4 4
CNT = 0000

0001
0010
0011
0100
…
1111
0000
…One transition per clock edge…
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General Sequential Systems

D   QD   Q

Current
StateState

MemoryInput
Forming

Logic

Next
State
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A Sequential Counter

CLK

Next
State 01 10 11 00 01

Current
State 00 01 10 11 00

The current state
loads the next
state values in
response to the 
clock edge.

IFL reacts after 
some gate delays
to produce a new
next state.

Clock edges…
D   QD   Q

Current
StateState

Memory
+1 Next

State

2

Master Master MasterMaster Master
Slave Slave Slave Slave
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Transition Table for 2-Bit Counter

Current
State

Next
State

00 01
01 10
10 11
11 00

It is the truth table for the input forming logic…

It describes what the next state values are as a function
of the current state
(clock is assumed)

Q1 Q0 N1 N0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

Current
State

Next
State
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General Counter Design Procedure

• Write transition table for counter
– Use X’s as appropriate

• Reduce each Nx variable to an equation
• Implement input forming logic (IFL) using 

gates
• Draw schematic using FF’s + IFL
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Counters With Outputs

Outputs

D   QD   Q

Current
State

Input
Forming

Logic

Next
State

State
Memory

Output
Forming

Logic

Outputs = f(CurrentState)
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Combined Transition Table
Q2 Q1 Q0 N2 N1 N0 Z

0 0 0 0 0 1 1
0 0 1 0 1 0 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 1 0 1 0
1 0 1 1 1 0 0
1 1 0 1 1 1 1
1 1 1 0 0 0 0

Current state Next state Output

Z = Q2’Q1’Q0’ + Q2’Q1Q0 + Q2Q1Q0’

(implement OFL with gates)
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State Graphs
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Binary Counter State Graph

00

10

0111

Q1 Q0 N1 N0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

State

Transition

State graphs are graphical
representations of TT’s

They contain the same information:
no more, no less
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State Graphs for Counters With Inputs

00

10

0111

INC

INC
INC

INC

INC’

INC’

INC’

INC’

INC Q1 Q0 N1 N0

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0

There is a one-to-one
correspondence between
the rows of the TT and
the arcs in the SG

INC controls whether transition
is taken or not…
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Transition Table Simplification
CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0

CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 0 0
1 - 0 0 0 0
1 - 0 1 0 0
1 - 1 0 0 0
1 - 1 1 0 0

These are input don’t cares.  
They are a shorthand for the TT on the left
This TT exactly matches SG on previous page

CLR INC Q1 Q0 N1 N0

0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 0 0
1 - - - 0 0
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Simplified Transition Tables 
With Input Don’t Cares

• Contain exactly same information as original
– Shorthand way of writing

• Should be able to easily convert back/forth
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Design Procedure Using State Graphs

1. Draw the state graph

2. Create an equivalent transition table

3. If transition table contains input don’t cares, 
- unfold it to a full transition table

4. Complete the design using KMaps, gates, FF’s
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Cascaded Counters
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A Mod4 Counter With a Rollover Signal

CLR INC Q1 Q0 N1 N0 Rollover

0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 1 1 1 1 0
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 1 1 0
0 1 1 1 0 0 1
1 - - - 0 0 0

00

10

0111

CLR’ • INC
CLR’ • INC’

CLR

CLR’ • INCCLR’ • INC

CLR’ • INC/Rollover

CLR’ • INC’

CLR’ • INC’

Signal Rollover can be used to tell
other circuitry that counter is
rolling over to all 0’s

Mealy output CLR’ • INC’
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Cascading 2 Mod4 Counters

00
01
02
03
10
11
12
13
20
21
22
23
30
31
32
33
00

Count sequence

Mod4 
Counter

2

INCRollover0

Digit0

Increment higher
digit’s counter
when lower digit’s
counter is rolling
over

Digit1 Digit0

CLR
Mod4 

Counter

2

Rollover1

Digit1

CLR

clk clk
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3 Digits’ Worth

Mod4 
Counter

2

INCRollover0

Digit0

CLR
Mod4 

Counter

2

Rollover1

Digit1

CLR
Mod4 

Counter

2

Rollover2

Digit2

CLR

Increment higher
digit’s counter
when lower digit’s
counter is rolling
over

Can do this with any
counter that has 
a Rollover outputCould build a digital watch

or clock circuit this way with
Mod60 and Mod24 counters

clkclkclk
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Cascading Counters

• A counter will increment only when
– The counter below it is at its terminal count 

and it is being incremented
• That is the definition of the Rollover signal

• Some people try to tie Rollover to the clk
input of the next higher counter
– Bad idea… Very bad idea…
– Violates our Globally Synchronous policy
– Doesn’t work as intended
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Ripple Counters

• When you tie a rollover-like signal to a clock 
on the next higher digit ripple counter

• A ripple counter is an ASYNCHRONOUS 
counter
– Transitions are not all synchronized to the clock
– Different flip flops change at different times
– Similar to gated clocks (seen earlier)

• Asynchronous circuits are an advanced topic



15 COUNTERS
Page 51

ECE238L © 2006

Another Common Ripple Counter

CLK

T  Q
Q’

‘1’
T  Q

Q’

‘1’
T  Q

Q’

‘1’
T  Q

Q’

‘1’

Q3 Q2 Q1 Q0

Sequence is:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

So what is the problem?
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Mod4 Counter
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D   Q

D   Q

IFL

Inc

Terminal
Count

Roll
Over

A Mod4 Counter

Count
Value

The right way!

Clr
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A Mod4 Counter

MOD4

Count
Value

Roll
Over

Clock

Clear

Increment
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Registers
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A 4-Bit Register
CLK

D3

CLK

D2

CLK

D1

CLK

D0

Q3

Q2

Q1

Q0

D   Q

CLK

D Q
4 4

D   Q

D   Q

D   Q

D   Q

Could be called a parallel-in/parallel-out
register.

Why?
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A Shift Register

CLK

Serial-In D   Q D   Q D   Q D   Q

CLK CLK CLK

Q3 Q2 Q1 Q0

cycle 0 1 0 1 1
cycle 1 0 1 0 1
cycle 2 0 0 1 0
cycle 3 0 0 0 1
cycle 4 0 0 0 0

Called a serial-in, parallel-out shift register (SIPO)
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SIPO Register (Serial-In/Parallel-Out)

CLK

Serial-In D   Q D   Q D   Q D   Q

CLK CLK CLK

Q3 Q2 Q1 Q0

Parallel-Out
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SISO Register (Serial-In/Serial-Out)

CLK

Serial-In D   Q D   Q D   Q D   Q

CLK CLK CLK

Serial-Out

Useful for delaying a serial bit-stream some number of cycles…
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Gated Clocking

• Different flip flops load at different times
– A form of clock skew
– Makes doing timing analysis more difficult
– Can lead to circuits which run more slowly
– Can lead to circuits which fail at any clock rate
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Globally Synchronous Design

• One global clock
• All registers load on that clock’s edge
• Control over loading done via input forming logic (IFL)

• Simplifies timing analysis and requirements
• Makes it possible for even novices to design large, 

functioning circuits

• Multi-clock circuits next semester’s topic
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The Correct Way To Make 
A Loadable Register (1-Bit)

D   Q
0

1

CLK
LOAD

DIN
Q

When LOAD=‘0’, FF loads old value

When LOAD=‘1’, FF loads DIN
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A Loadable Parallel-In, Parallel-Out 
Register

D   Q
0

1

CLK
LOAD

DIN(3:0)
Q(3:0)

4

4 4

PIPO ?
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MUX for Register Control

• Loadable register concept can be generalized
– Provide any combination of inputs to register
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Uses of Shift Registers

• Collecting serial input data into a parallel word
• Shifting out bits of a word
• Delaying a serial stream by some # of cycles
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A Clearable Counter

CLR INC Q+
0 0 Q
0 1 Q+1
1 0 0
1 1 Q

D   Q Q

CLKCLR INC

Q
Q+1

0
Q

44
4

4

4

4

2

From there to here, from here to there, 
interesting circuits are everywhere…

(when you have a MUX and some flip flops)
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An Up/Down Counter

D   Q Q

CLKUP/DN#

Q-1
44

0

1Q+1

How about an up/down counter + bi-directional shift register design?
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Up/Down Counter + 
Bi-Directional Shift Register

Control NextQ
00 Q+1
01 Q-1
10 Q shifted left
11 Q shifted right

D   Q Q

CLKControl

Q+1
Q-1

Q<<1
Q>>1

44
4

4

4

4

2
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An Accumulator

D   Q Q

CLK
CLR

44

0

1

+A
D   Q Q

CLK
CLR

44

0

1

+A

0

This one loads 0 when CLR=‘1’ This one loads A when CLR=‘1’

Both work, they just have different timings…

Values to be added are placed on A input, one 
per cycle.  Register accumulates their sum.

4

4

Version A Version B
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Register Files

Small memories holding multiple 
words of data
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Typical Register File

DataIn

clk

Addr

regWE

RegFile

DataOut

n

n

m
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Building a Register File

Reg0

Reg1

Reg2

Reg3

Reg4

Reg5

Reg6

Reg7

Write
Decoder

Addr

regWE

R
eg

is
te

r w
rit

e 
si

gn
al

s

DataIn clk
8:

1 
M

U
X

DataOut

m=3 n

n

n
n

n
n
n

n

n
n
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Multi-Ported Register File

Reg0

Reg1

Reg2

Reg3

Reg4

Reg5

Reg6

Reg7

Write
Decoder

WAddrWE

R
eg

is
te

r w
rit

e 
si

gn
al

s

DataIn clk

RAddr1
8:

1 
M

U
X

Raddr2

DataOut1

DataOut2

One write port
Two read ports

Can be reading from
two locations on same
cycle you write to 
another location

Useful for 
microprocessor design



15 COUNTERS
Page 74

ECE238L © 2006

Memories vs. Register Files

• Random Access Memory (RAM) is similar to a register 
file
– Stores many multi-bit words for reading/writing

• RAM usually only single-ported
• RAM usually much, much larger 

– Mbytes instead of bytes
• RAM implementation conceptually the same as 

register file
– Transistor-level implementation different due to 

size/usage characteristics
• RAM design beyond the scope of this class
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Finite State Machines
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State Machine Concepts

• State, current state, next state, state 
registers

• IFL, OFL, Moore outputs, Mealy outputs
• Transition tables

– With output don’t cares (X’s)
– With input don’t cares (-’s)

• State graphs
– And their correspondence to TT’s
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State Machines

• A state machine is a sequential circuit which 
progresses through a series of states in 
reponse to inputs
– The output values are usually significant
– The state encodings are usually not significant

• Unlike with counters
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Implementing the Sequence Detector 
FSM

1. Create symbolic Transition Table
2. Assign state encoding
3. Create conventional Transition Table
4. Do standard implementation steps 

Xin CS NS Z

0 S0 S1 0
1 S0 S0 0
0 S1 S1 0
1 S1 S2 0
0 S2 S1 0
1 S2 S3 0
- S3 S3 1

Xin Q1 Q0 N1 N0 Z

0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 1 0
1 0 1 1 0 0
0 1 0 0 1 0
1 1 0 1 1 0
- 1 1 1 1 1

Symbolic TT Conventional TTState Assignment

S0 = 00
S1 =  01
S2 =  10
S3 =  11



15 COUNTERS
Page 79

ECE238L © 2006

Sequence Detector Implementation

Q1

CLK

Q0

CLK

Q1

D   Q

D   Q

Q0
N1

N0

Q1
Xin
Xin
Q0

Xin’
Q1

Z

N1 = Q1•Q0 + Xin•Q1 + Xin•Q0
N0 = Xin’ + Q1
Z = Q1•Q0
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Resetting State Machines

• Ability to reset the FSM is essential for 
testing most systems

• Always include a reset capability
– Add CLR signal to state graph
– Use flip flops with clear inputs

– Either method will work
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One-Hot Encoded
Finite State Machines
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One-Hot - Observations

• Choosing a one-hot encoding results in many, 
many don’t cares in transition table

• Minimization results in simpler IFL and OFL

• Can do one-hot design by inspection
– without using transition tables…
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Other State Encoding Techniques

• You have learned the 2 extremes
– Fully encoded (8 states 3 state bits)
– One-hot encoded (8 states 8 state bits)

• A range of options exist in between

• A good choice of encoding
– Can minimize IFL and OFL complexity
– Algorithms have been developed for this…
– Beyond the scope of this class
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