vl

Avoiding Load/Use Hazard

demo-luh.ys 10 11 12
0x000: irmovl $128, $edx
0x006: irmovl S$3, %ecx Hn
0x00c: rmmovl %ecx, 0 (%edx) nm
0x012: irmovl $10, $ebx -n---
0x018: mrmovl 0O (%edx), %eax # Load %eax -n-m-
bubble NEIM|W
O0x0le: addl %ebx, $eax # Use %eax nnm
0x020: halt F]JFIDJEIMIW
Can’t beat this: S
W
m Stall reading instruction for
one cycle W _valE = 10
m Can then forward loaded M
M dstM = $eax
value from memory stage 1 Vol & M[126] = 3

valA « W valk =10
valB €« m valM =3

ECEN-CS 324

Execute

F 3 F 3

E Decode

e_valE

valA valB

ﬂ icode] ifun- valC

srcAI srcEJ

W_valM l
F{eglster
file W valE

rB

n icodegl ifun| TrA

T

E icode in { IMRMOVL, IPOPL } &&
E dstMin {d srcA,d srcB}

Load/Use Hazard

V2

ECERCS 324

Control for Load/Use Hazard

demo-luh.ys 1 2 3 4 5 6 7 8 9 10 11 12
0x000: irmovl $128, %edx F| D| E| M| W
0x006: irmovl $3, %ecx F| DI E|{ M| W
0x00c: rmmovl %ecx, 0 (%edx) il Bl E N W
0x012: irmovl $10, %ebx F| DI E| M| W
0x018: mrmovl 0 (%edx),%eax # Load %eax F D EIl M| W
bubble] E| M| W
O0x0le: addl %ebx, $eax # Use %eax F D D El M| W
0x020: halt F s D| E| M| W

m Stall instructions in fetch
and decode stages

m Inject bubble into execute
stage

V:3 ECENn-CS 324

V4

Branch Misprediction Example

demo-j.ys

0x000: xorl %eax, $eax

0x002: jne t # Not taken

0x007: irmovl $1, %eax # Fall through

0x00d.: nop

0x00e: nop

0x00f: nop

0x010: halt

0x011l: t: irmovl $3, %edx # Target (Should not execute)
0x017: irmovl $4, %ecx # Should not execute

0x01d: irmovl S5, %edx # Should not execute

m Should only execute first 7 instructions
m Our branch predictor will mispredict the branch as taken

ECEN-CS 324

V:5

Handling Mlspredlctlon

demo-j.ys

O0x000: xorl %eax, seax -n-m-
O0x002: Jne target # Not taken -n-m-
0x011l: t: irmovl $2, %edx # Target n

bubble .

Ox0175 irmovl $3,%ebx # Target+l

bubble »D|E[M|W
0x007: irmovl $1,%eax # Fall through nm
0x00d: nop FID[E|M]|W
Branch misprediction detected in execute stage
m Instruction at target address is in decode

m Next instruction has been fetched

Recovering
m Detect branch not-taken in execute stage
m On next cycle, replace mispredicted instructions by bubbles
m We're lucky! No side effects have occurred yet

ECEN-CS 324

V:6

—o—_ -
Mispredicted Branch |E_icode = IUXX & !le Bch

ECERCS 324

LV g

Control for Misprediction

demo-j.ys 6 7 8 9 10

1 2 3 o o

0x000: xorl %eax, seax n
0x002: Jjne target # Not taken n
0x011: t: irmovl $2,%edx # Target "F|D

bubble .
0x017: irmovl $3, %ebx # Target+l

bubble .n
0x007: irmovl S$1,%eax # Fall through nm
0x00d: Nnop n

Mispredicted Branch m bubble | bubble mm

ECEN-CS 324

demo-retb.ys

Return Example

0x000: irmovl Stack, %esp # Initialize stack pointer
0x006: call p # Procedure call

0x00b: irmovl $5, %$esi # Return point

0x011: halt

0x020: .pos 0x20

0x020: p: irmovl $-1, $edi # procedure

0x026: ret

0x027: irmovl S1, $eax # Should not be executed
0x02d: irmovl S2, $ecx # Should not be executed
0x033: irmovl S$3, $edx # Should not be executed
0x039: irmovl $4, %$ebx # Should not be executed
0x100: .pos 0x100

0x100: Stack: # Stack: Stack pointer

m Without special handling we would execute three more
instructions after ret before we know return address

m Instead, we’ll freeze the pipe when ret is fetched

ECEN-CS 324

V9

Correct Return Example

demo-retb

0x026: ret
bubble
bubble
bubble
0x00b: irmovl $5,%esi # Return

m As ret passes through
pipeline, stall at fetch stage

® While in decode, execute, and
memory stage *

m Inject bubble into decode
stage

m Release stall when ret
reaches write-back stage

ECEN-CS 324

V:10

dstkE | dstM | srcA | srcB

| | dsrch| dsrcE|

W _valM

Decode A

B
Register M
file W valE

n icode | ifun rA B

Posdbo: [0000 0 0 |

IRET in { D icode, E icode, M icode }

ECERCS 324

Control for Return

demo-retb

0x026: ret
bubble
bubble
bubble
Ox005b 3 irmov]l S$5,%esi # Return

Processing ret

Vi1t ECEN-CS 324

Special Control Cases

Detection

IRET in { D icode, E icode, M icode }

Load/Use Hazard E icode in { IMRMOVL, IPOPL } &&
E dstMin{d srcA,d srcB}

Mispredicted Branch [E_icode = IJXX & 'e Bch

Action (on next cycle)

bubble

Processing ret

Load/Use Hazard
Mispredicted Branch

bubble

bubble | bubble

Vil2 ECEN-CS 324

V:13

Implementing Pipeline Control
“icode_ valE valM - dstE | dstM

M icode
valA - dstE | dstM

valA valB dstE | dstM | srcA | srcB

m Combinational logic generates pipeline control signals
m Action occurs at start of following cycle

ECEn-CS 324

Initial Version of Pipeline Control

bool F stall =
Conditions for a load/use hazard
E icode in { IMRMOVL, IPOPL } && E dstM in { d srcA, d srcB } ||
Stalling at fetch while ret passes through pipeline
IRET in { D icode, E icode, M icode };

bool D stall =
Conditions for a load/use hazard
E icode in { IMRMOVL, IPOPL } && E dstM in { d srcA, d srcB };

bool D_bubble =
Mispredicted branch
(E_ icode == IJXX && 'e Bch) ||
Stalling at fetch while ret passes through pipeline
IRET in { D icode, E icode, M icode };

bool E bubble =
Mispredicted branch
(E_icode == IJXX && 'e_Bch) ||
Load/use hazard
E i1code in { IMRMOVL, IPOPL } && E dstM in { d srcA, d srcB};

How do | know this works?

V:14 ECEN-CS 324

Control Combinations

Load/use Mispredict ret 1 ret 2 ret 3
M M M M M ret
FE | Load E JXX E = ret E | bubble
D Use D D ret D | bubble | D | bubble

A A

T Combination A T

Combination B

m Special cases that can arise on same clock cycle

Combination A
m Not-taken branch
m ret instruction at branch target

Combination B
m Instruction that reads from memory to $esp
m Followed by ret instruction

V:i15 ECENn-CS 324

Control Combination A
L1

Mispredict ret 1 | T

Instruction

M M Fetch racsy
= JXX - E N
D D ret
T Combination A T

bubble
bubble

Processing ret

bubble

Mispredicted Branch

Combination stall bubble | bubble | normal | normal

= Should handle as mispredicted branch

m Combination will also stall F pipeline register

m But PC selection logic will be using M_valM anyway
m Correct action taken!

V:16 ECEN-CS 324

V:il7

Control Combination B

M
E
D

Load/use ret 1
M
Load E
Use D ret
T Combination B T

stall

= Would attempt to bubble and stall pipeline register D
® Would be signaled by processor as pipeline error

m Combination not handled correctly in authors’ initial version

e But it passed many simulation tests; caught only with

systematic analysis

ECENn-CS 324

V:18

Handling Control Combination B

ret 1

M
E
D

Processing ret

Load/Use Hazard

Load/use

Load

Use

[

Combination B

M
E
D

ret

Combination

m Load/use hazard should get priority

stall

bubble

stall

bubble

bubble | normal | normal

m ret instruction should be held in decode stage for additional
cycle

ECEN-CS 324

Corrected Pipeline Control Logic

bool D bubble =
Mispredicted branch
(E_ icode == IJXX && 'e Bch) ||
Stalling at fetch while ret passes through pipeline
IRET in { D icode, E icode, M icode }
but not condition for a load/use hazard
§& ! (E_icode in { IMRMOVL, IPOPL }
&& E dstM in { d_srcA, d_srcB });

Processing ret bubble

Load/Use Hazard bubble

Combination stall stall bubble | normal | normal

m Load/use hazard should get priority

m ret instruction should be held in decode stage for additional
cycle

vile ECENn-CS 324

Performance Metrics

Clock rate
m Measured in Megahertz or Gigahertz

m Function of stage partitioning and circuit design
e Keep amount of work per stage small

Rate at which instructions executed
m CPI: cycles per instruction

m On average, how many clock cycles does each instruction
require?

m Function of pipeline design and benchmark programs
e E.g., how frequently are branches mispredicted?

V:20 ECEN-CS 324

CPI for PIPE

ldeal CPI =1.0

m Fetch instruction each clock cycle

m Process new instruction every cycle
® Although each individual instruction has latency of 5 cycles

Actual CPI > 1.0

m Sometimes pipeline stalls, branches are mispredicted

Computing CPI
m C clock cycles
m | instructions executed to completion
m B bubbles injected (C =1 + B)
CPlI = C/1 = (I+B)/I = 1.0 + B/l

m Factor B/l represents average penalty (per instruction)
due to bubbles

V:21 ECENn-CS 324

CPI for PIPE (Cont.)

B/l=LP + MP + RP

s LP: Penalty due to load/use hazard stalling ' YP'cal Values

® Fraction of instructions that are loads 0.25
® Fraction of load instructions requiring stall 0.20
® Number of bubbles injected each time 1

= LP=0.25%0.20*1 =0.05
= MP: Penalty due to mispredicted branches

® Fraction of instructions that are cond. jumps 0.20
® Fraction of cond. jumps mispredicted 0.40
® Number of bubbles injected each time 2

= MP =0.20 *0.40*2 =0.16

m RP: Penalty due to ret instructions

® Fraction of instructions that are returns 0.02
® Number of bubbles injected each time 3
= RP =0.02 *3 =0.06

m Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
= CPlI =1.27 (Not bad!)

V:22 ECEN-CS 324

State-of-the-Art Pipelinin

What have we ignhored in our Y86 implementation?

m Balancing delay in each stage
® Which stage is longest, how might we speed it up?

m Handling exceptions

® When something comes up hardware can’t handle, it hands off
control to operating system

® Mechanism essentially the same as that used for interrupts

® Design to support what software expects (precise exceptions)
has implications in design of pipeline

V23 ECENn-CS 324

. s - i = .
= i i . "
| I -'l | . [}
- by g
g L., = b . i r 1 - ':I..:_.
— —n _—_ = ——— e (B T
A

M icode
M Bch

During Fetch Cycle

W icode

1. Select PC mim& W_valM

1ifun rA rB

2. Read bytes from 1 T 1
instruction memory

3. Examine icode to .._.

PC
increment

determine !
instruction length [soit | |_Aign
Byte 0 Bytes 1-5
4. Increment PC Instruction

memory

Timing

m Steps 2 & 4 require
significant amount
of time

V:24 ECEN-CS 324

Standard Fetch Timing

Select PC need regids, need valC

‘\ | Mem. Read | \ | Increment \

%/—/

1 clock cycle

m Must Perform Everything in Sequence

m Can’t compute incremented PC until know how much to
increment it by

V:25 ECEN-CS 324

A Fast PC Increment Circuit

incrPC

High-order 29 bits Low-order 3 bits

3-bit adder

n.eed_regids

| | R 0
High-order 29 bits need ValC

Fast

Low-order 3 bits

PC

V:26 ECEN-CS 324

Modified Fetch Timing

need regids, need valC
Select PC \3'b't aad

\ Mem. Read MUX

Incrementer

%/—/

1 clock cycle

29-Bit Incrementer
m Acts as soon as PC selected
m Output not needed until final MUX
m Works in parallel with memory read

V:27

Standard cycle

ECERCS 324

Exceptions

m Conditions under which pipeline cannot continue normal

operation
Causes
m Halt instruction (Current)
m Bad address for instruction or data (Previous)
m Invalid instruction (Previous)
m Pipeline control error (Previous)

Desired Action

m Complete some instructions
® Either current or previous (depends on exception type)

m Discard others

m Call (transfer control to) exception handler
e Like an unexpected procedure call

V:28 ECEN-CS 324

Exception Examples

Detect in Fetch Stage

Jmp $-1 # Invalid jump target
.byte OxFF # Invalid instruction code
halt # Halt instruction

Detect in Memory Stage

irmovl $100, $eax
rmmov]l %$eax,0x10000 (%eax) # invalid address

V:29 ECEN-CS 324

Exceptions in Pipeline Processor #1

demo-excl.ys

irmovl $100, $eax

rmmov]l $%$eax, 0x10000 (%eax) # Invalid address

nop

.byte O0xFF # Invalid instruction code

0x000: irmovl $100, %$eax Exception detected

0x006: rmmovl %eax,0x10000 (%eax)

0x00c: nop
0x00d: .byte OxFF

Exception detected

Desired Behavior
m rmmovl should cause exception

V:30 ECEN-CS 324

Exceptions in Pipeline Processor #2

demo-exc2.ys

0x000: xorl %eax, $eax # Set condition codes
0x002: jne t # Not taken
0x007: irmovl $1, %Seax
0x00d: irmovl $2, $edx
0x013: halt
0x014: t: .byte OxFF # Target
0x000: xorl %eax, $eax
0x002: jne t

0x014: t: .byte OxFF
0x???: (I'm lost!)

0x007: irmovl $1, $eax

Exception detected
Desired Behavior

m No exception should occur

V:31 ECEN-CS 324

V:32

predPC

m Add exception status field to pipeline registers

m Fetch stage sets to either “AOK,” “ADR” (when bad fetch
address), or “INS” (illegal instruction)

m Decode & execute pass values through
m Memory either passes through or sets to “ADR”
m Exception triggered only when instruction hits write back

ECERCS 324

Side Effects in Pipeline Processor

demo—-exc3.ys

irmovl $100, $eax

rmmov]l %eax,0x10000 (%$eax) # invalid address

addl %eax, %Seax # Sets condition codes

Exception detected

0x000: irmovl $100, %$eax

0x006: rmmovl %Seax, 0x10000 (%eax)

O0x00c: addl %eax, Seax

Condition code set

Desired Behavior
m rmmovl should cause exception

m No following instruction should change any state

V:33 ECEN-CS 324

Avoiding Side Effects

Presence of Exception Should Disable State Update

m When exception detected in memory stage
® Disable condition code setting in execute
® Must happen in same clock cycle

m When exception passes to write-back stage
® Disable memory write in memory stage
® Disable condition code setting in execute stage

Implementation in Y86 Tools
m Hardwired into the design of the PIPE simulator
= You don’t have to worry about it, can’t change it

V:34 ECEN-CS 324

Rest of Exception Handling

Calling Exception Handler

m Push PC onto stack
® Either PC of faulting instruction or of next instruction
e Usually pass through pipeline along with exception status

= Jump to handler address
e Usually fixed address
® Defined as part of ISA

Implementation
m Critical for real hardware

m Seldom implemented in simulators
® No OS running to pass control to!

V:35 ECEN-CS 324

State-of-the-Art Pipelinin

What else have we ignhored?

m More complex instructions: consider FP divide, sqrt
® Take many cycles to execute
® Forwarding can’t solve hazards: more data stalls
e Important for compiler to schedule code

m Deeper pipelines to allow faster cycle times
® Increased penalty on misprediction
® Increased emphasis on branch prediction

m Actual memory hierarchy issues (will increase CPI)
e Difficult to complete memory access in one cycle!
® Possibility of cache misses, TLB misses, page faults

m Superscalar approach: process multiple instructions/cycle

m Dynamic scheduling
e Scheduling = determining instruction execution order
® Hardware decides based on data dependencies, resources

V:36 ECEN-CS 324

Modern CPU Design

Instruction Control
Address

struction

- Register
: .| File

Register : Prediction
Upd - : OK?

y VY v v v v
Operation Results Addr. Addr
Data Data

Executio

V:37 ECEN-CS 324

Instruction Control

| | Address |
Register |
File

Operations
Grabs Instruction Bytes From Memory

m Based on Current PC + Predicted Targets for Predicted Branches

m Hardware dynamically guesses whether branches taken/not taken
and (possibly) branch target

Translates Instructions Into Operations

m Primitive steps required to perform instruction
m Typical instruction requires 1-3 operations

Converts Register References Into Tags

m Abstract identifier linking destination of one operation with sources
of later operations

V:38 ECENn-CS 324

Register Prediction

Exwultion Updates * OK?

Operations

----E] -El

Operation Results Addr
Data Data

Execution

m Multiple functional units
e Each can operate in independently

m Operations execute as soon as operands available
® Not necessarily in program order
e Within limits of functional units

m Control logic
® Ensures behavior equivalent to sequential program execution

V:39 ECENn-CS 324

V:40

m 1load

m 1 store

m 2 integer (one may be branch)
= 1 FP Addition

= 1 FP Multiplication or Division

m Instruction Latency
m Load / Store 3
m Integer Multiply 4
m Integer Divide 36
m Double/Single FP Multiply S
m Double/Single FP Add 3
m Double/Single FP Divide 38

Multiple Instructions Can Execute in Parallel

Some Instructions Take > 1 Cycle, but Can be Pipelined

Cycles/Issue
1
|

36
2
1

38

ECERCS 324

PentiumPro

P6 Microarchitecture
m PentiumPro
m Pentium li
m Pentium lll

Microprocessor Report
2/16/95

=i TLH

(32 entry) BK Instruction Cache

=
Branch

Taraed ——H Simple Decoder
Bufler i Simple Decoder
T — Genaral Decoder
Instruction +
Fetch Unit| IN-ORDER | Uop Seguencer

SECTION

Feservation Staton
(20 antries)

=2 Shore Lgan
Stors Addi Adelr Intagar FP Intagar

DiEla Linit il AlLU Lt Lniit

i A i

ME!rnl:-r'g.f Haordear L)1, o)
- - OQUT-OF-ORDER
Bufter (MOB) EXECUTION ENGINE

1 :I-:lr-:l‘l, i i | o ioad darla ™ X

B4 antry 8K Dual-Portad Data Cache

Sysiem Bus Interface L2 Cache Imerfacs

‘I 5 addr Iﬁd dala '1--.1-!‘1 ciin

PentiumPro Operation

Translates instructions dynamically into “Uops”™
m 118 bits wide
m Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine

m Uop executed when
® Operands available
e Functional unit available

m Execution controlled by “Reservation Stations”
® Keeps track of data dependencies between uops
® Allocates resources

Basic pipeline

~~orzNlo= s 4 210
J & - | s % S '___..-

V42 ECENn-CS 324

PentiumPro Branch Prediction

Critical to Performance
m 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history

m Adaptive algorithm

e Can recognize repeated patterns, e.g., alternating taken—not
taken

Handling BTB misses
m Detectin cycle 6

m Predict taken for negative offset, not taken for positive
® Loops vs. conditionals

V:43 ECENn-CS 324

Example Branch Prediction

Branch History

m Encode information about prior history of each individual
branch instruction: store as hash table on instr. address

m Predict whether or not branch will be taken

State Machine
m Each time branch taken, transition to right
m When not taken, transition to left
m Predict branch taken when in state Yes! or Yes?

V:44 ECENn-CS 324

Pentium® 4 CPU Block Diagram

SysStem

’I'II' T™T

Instruct.
Decoder

Operations
m Replaces traditional instruction cache

m Caches instructions in decoded form

Double-Pumped ALUs

m Simple instructions (add) run at 2X clock rate

Very Deep Pipeline

m 20+ cycle branch penalty: enables very high clock rates
m Slower than Pentium lll for a given clock rate

V:46 ECENn-CS 324

