Housing Prices, Pollution, and Trends in the Value of a Statistical Life

David S. Dixon
Department of Economics
University of New Mexico

10 February 2010
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. **Gregor’s Study**
 Model, data, aggregation
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Summary

1. The Value of a Statistical Life (VSL)
2. Portney’s Approach
3. Gregor’s Study
4. Portney’s VSL for Allegheny County
5. Smith & Huang’s Meta-Study
6. iHAPSS MROD Data
7. VSL for Multiple Cities
8. Geographical variations in VSL
9. Conclusion
Portney’s Approach – MWTP Data

Gives

\[
\frac{dV}{dQ}
\]

where

\[
V = \text{home sale price}
\]
\[
Q = \text{level of pollution (dust or SO}_2\text{)}
\]

Portney infers \(dV/dQ\) of \$59* per \(\mu g/m^3\) TSP

15% change in dustfall \(\rightarrow\) 15% change in TSP \(\rightarrow\) 18 \(\mu g/m^3\) change in TSP

* 2007 dollars
Portney’s Approach – MROD Data

EPA report by John Gregor (1977)

Gregor says there are three ways to get MROD data:

- Experiment
- Episodic studies
- Epidemiological studies

Are there increases in death due to pollution-related causes when the level of pollution increases?

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Independent Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardio/respiratory deaths</td>
<td>Education (proxy for income, insurance)</td>
</tr>
<tr>
<td>Other deaths</td>
<td>Population density</td>
</tr>
<tr>
<td>Total deaths</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
</tr>
<tr>
<td></td>
<td>TSP</td>
</tr>
<tr>
<td></td>
<td>SO$_2$</td>
</tr>
</tbody>
</table>

Gregor’s Study

Data from 1968-1972
By race, sex and age group
9% non-White in Allegheny County

<table>
<thead>
<tr>
<th>1970 Census</th>
<th>Population</th>
<th>% non-White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pittsburgh</td>
<td>520,117</td>
<td>20.7%</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>1,605,016</td>
<td>9.3%</td>
</tr>
<tr>
<td></td>
<td>excluding Pittsburgh</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2000 Census</th>
<th>Population</th>
<th>% non-White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pittsburgh</td>
<td>334,563</td>
<td>32.4%</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>1,281,666</td>
<td>15.7%</td>
</tr>
<tr>
<td></td>
<td>excluding Pittsburgh</td>
<td>9.8%</td>
</tr>
</tbody>
</table>
Gregor’s Results

<table>
<thead>
<tr>
<th>White Population Only</th>
<th>Sex</th>
<th>Deaths per 100,000 per μg/m³ per annum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 45</td>
<td>Male</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.349</td>
</tr>
<tr>
<td>45 – 64</td>
<td>Male</td>
<td>4.014</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.570</td>
</tr>
<tr>
<td>65 and over</td>
<td>Male</td>
<td>10.291</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>9.541</td>
</tr>
</tbody>
</table>

For a household consisting of a 40-year-old couple with one male child

\[MROD_{\text{household}} = \frac{0.500 + 0.349 + 0.500}{100,000} = 1.349 \times 10^{-5} \]
Portney’s Results

Household MWTP is the annual cost of \(\frac{dV}{dQ} \). Portney assumed a 10% interest rate, so

\[
MWTP = \rho \frac{dV}{dQ} = 0.10 \times \$59 = \$5.90
\]

Thus, for a household consisting of a 40-year-old couple with one male child

\[
VSL_{\text{household}} = \frac{MWTP}{MROD_{\text{household}}} = \frac{\$5.90}{1.349 \times 10^{-5}} = \$437k
\]

Note that, for a household consisting of a single 40-year-old male

\[
VSL_{\text{male} < 45} = \frac{MWTP}{MROD_{\text{male} < 45}} = \frac{\$5.90}{0.500 \times 10^{-5}} = \$1.18M
\]
Gregor’s Results Revisited

<table>
<thead>
<tr>
<th>White Population Only</th>
<th>Sex</th>
<th>Deaths per 100,000 per μg/m³ per annum</th>
<th>% Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 45</td>
<td>Male</td>
<td>0.500</td>
<td>31.66%</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.349</td>
<td>32.81%</td>
</tr>
<tr>
<td>45 – 64</td>
<td>Male</td>
<td>4.014</td>
<td>11.76%</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.570</td>
<td>13.06%</td>
</tr>
<tr>
<td>65 and over</td>
<td>Male</td>
<td>10.291</td>
<td>4.48%</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>9.541</td>
<td>6.22%</td>
</tr>
</tbody>
</table>

Weighted average = 2.000 deaths per 100,000 per μg/m³ per annum

\[VSL_{random} = \frac{$5.90}{2.000 \times 10^{-5}} = $295k \]
Smith-Huang Meta-Study

37 hedonic housing studies between 1964 and 1978 yielding dV/dQ. Developed an econometric model of dV/dQ with independent variables:

- TSP
- Income
- Vacancy
- # of neighborhood characteristics in hedonic model
- # of air pollution variables in hedonic model
- Actual price flag
- Linear model flag
- Semilog model flag
- Log-linear model flag
- OLS estimator flag
- Census 1960 vs. Census 1970
- Year
- Unpublished flag
- Inverse mills ratio

Meta-model: MWTP for Pittsburgh $124.50 per $\mu g/m^3$

Health Effects Institute

NMMAPS (National Morbidity, Mortality, and Air Pollution Study) – 1996 - 2000. 20, then 90 cities.
- co-pollutant correlation \((TSP, SO_2, O_3)\)
- measurement error
- exposure error
- mortality displacement
- TSP \(\rightarrow\) PM10 \((14\text{ cities})\)

Joined by Schwartz, Dockery, and Francesca Dominici

Time-series issues
NMMAPS grew into iHAPSS - the Internet-based Health and Air Pollution Surveillance System, which was funded by HEI and hosted at Johns Hopkins.

Eventually included the 100 largest US cities.

Log-linear model of mortality as a function of DOW, time, temp over multiple time-scales, humidity over multiple time scales, age, with multiple time-scale smoothing.

For Pittsburgh:

\[
MROD = \frac{0.2189}{100} \times \frac{746}{100,000} = 1.633 \times 10^{-7} \text{ per } \mu g/m^3 \text{ PM}_{10}
\]

\[
= 0.60 \times 1.633 \times 10^{-7} = 9.80 \times 10^{-8} \text{ per } \mu g/m^3 \text{ TSP}
\]

Smith-Huang Meta-Study

18 studies over 9 metropolitan areas for which there are iHAPSS data:

- Boston, Chicago, Kansas City, Los Angeles, Milwaukee, New York, San Francisco, St Louis, and Washington

4 Composite studies

Brookshire et al (1979) Los Angeles and Orange counties

Palmquist (1982) Minneapolis, Houston, Dallas, San Francisco, Miami, Los Angeles, Portland, Chicago, Philadelphia, Atlanta, Anaheim, Washington, Cincinnati, San Bernardino, Indianapolis, St. Louis, Baltimore, Detroit, Denver, Tacoma

Palmquist (1983) Chicago, Los Angeles, Philadelphia, San Bernardino, Portland, Denver, Detroit, Dallas, Washington, Indianapolis

Palmquist (1984) Miami, Houston, Atlanta, Denver, Seattle, Louisville, Oklahoma City
The Value of a Statistical Life (VSL)

$1.94M

Present value of lifetime earnings

2007 dollars
The Value of a Statistical Life (VSL)

$1.94M

$452k to $1.24M

WTA High-Risk Occupations
Thaler & Rosen (1975)

2007 dollars
The Value of a Statistical Life (VSL)

- Present value of lifetime earnings
 - Dargis (1989)
 - WTP
 - WTA
 - High-Risk Occupations
 - Thaler & Rosen (1975)

$1.94M

$452k to $1.24M

$0.9M

2007 dollars
The Value of a Statistical Life (VSL)

Housing Prices for Reduced Air Pollution (Portney 1984)

$437k

$1.94M

$452k to $1.24M

WTA High-Risk Occupations (Thaler & Rosen 1975)

2007 dollars
The Value of a Statistical Life (VSL)

WTP Housing Prices for Reduced Air Pollution (Portney, 1981)

WTP Smoke Detectors (Garbacz, 1989)

WTP Automobile Safety

Dreyfus & Viscusi (1995)

WTP Safety Belts, Car Seats and Motorcycle Helmets

Bromquist, Miller & LeM (1996)

$1.94M

$1.4M to $5.2M

$4.6M to $6.5M

$2.0M to $11.9M

$452k to $1.24M

$1.24M

$6.2M

2007 dollars
Portney’s Approach – Historical Context

1930 -1970 Flight to the suburbs
1970 -2008 Flight from the Rust Belt

Paul R. Portney, 1981, *Housing prices, health effect and valuing reductions in risk of death.* JEEM 8(72)
Portney’s Approach

The marginal risk of death (MROD) is the increase in the risk of death resulting from a $1 \mu g/m^3$ increase in total suspended particles (TSP).

Or, MROD is the decrease in the risk of death resulting from a $1 \mu g/m^3$ reduction in TSP. Inverting this gives us the population for which one statistical life is saved.

The home purchase decision of a household reflects the WTP for reduced ROD for all members of household. That is, they want to decrease the probability that any member of the household die from air pollution.

$$\frac{1}{MROD_{\text{household}}} = \text{Number of households in which one statistical life is saved}$$
VSL for Multiple Cities

- Boston: 1.31
- Chicago: 0.00, 0.00, 75.92
- Kansas City: 4.99
- Los Angeles: 44.81, 40.36
- Milwaukee: 27.23
- New York: 2.66
- Palmquist (83): 2.32
- Palmquist (82): 22.13
- Palmquist (84): 22.13
- San Francisco: 110.01
- SoCal Air Basin: 4.58
- St. Louis: 3.09
- Washington: 10.00, 11.13
- Total (all cities): 406.07

Millions of 2007 dollars
VSL for Multiple Cities – Econometric Models

Model 1
\[VSL = b_0 + b_1 \text{ (median household income)} \]

Model 2
\[VSL = b_0 + b_2 \text{ (population)} \]

Model 3
\[VSL = b_0 + b_3 \text{ (risk of death)} \]

Model 4
\[VSL = b + b_1 \text{ (median household income)} + b_2 \text{ (population)} + b_3 \text{ (risk of death)} \]
VSL for Multiple Cities – Zero Intercept Econometric Models

Model 5

\[VSL = b_1 \text{ (median household income) } \]

Model 6

\[VSL = b_2 \text{ (population) } \]

Model 7

\[VSL = b_3 \text{ (risk of death) } \]

Model 8

\[VSL = b_1 \text{ (median household income) } + b_2 \text{ (population) } + b_3 \text{ (risk of death) } \]
VSL for Multiple Cities – Results

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant std.err.</td>
<td>−69.247</td>
<td>44.458</td>
<td>66.139</td>
<td>−80.379</td>
</tr>
<tr>
<td></td>
<td>80.731</td>
<td>13.653</td>
<td>47.755</td>
<td>182.500</td>
</tr>
<tr>
<td>Income ($millions) std.err.</td>
<td>2090.734</td>
<td>1549.279</td>
<td>2558.065</td>
<td>2298.650</td>
</tr>
<tr>
<td>Population (millions) std.err.</td>
<td>−0.756</td>
<td>1.050</td>
<td>−1.274</td>
<td>1.229</td>
</tr>
<tr>
<td>R²</td>
<td>0.084</td>
<td>0.025</td>
<td>0.017</td>
<td>0.147</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>0.038</td>
<td>−0.024</td>
<td>−0.032</td>
<td>0.005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income ($millions) std.err.</td>
<td>773.677</td>
<td>205.134</td>
<td>1601.538</td>
<td>736.942</td>
</tr>
<tr>
<td>Population (millions) std.err.</td>
<td>1.237</td>
<td>1.030</td>
<td>−1.462</td>
<td>1.128</td>
</tr>
<tr>
<td>R²</td>
<td>0.404</td>
<td>0.064</td>
<td>0.324</td>
<td>0.459</td>
</tr>
<tr>
<td>adjusted R²</td>
<td>0.375</td>
<td>0.020</td>
<td>0.292</td>
<td>0.374</td>
</tr>
</tbody>
</table>

** 95 percent confidence
*** 99 percent confidence
VSL for Multiple Cities – Discussion

Whence the multiplier 774?

Mean Homeowner Income

Mean Income 31.2% higher than Median Income
Homeowner Income 11.7% higher than Median Income

Value of Leisure

$1.66M present value lifetime earnings based on median income implying a VSL of $16M to $33M. (Keeler 2001)

Together

The range is $23M to $48 assuming homeowner mean income. 1990 U.S. metropolitan median income was $53,584 (2007 dollars) Multiplier between 438 and 903.

Future Value

9.37% over 48 years
Appendices
Present Value of Lifetime Earnings

Figure 3. Synthetic Work-Life Earnings Estimates for Full-Time, Year-Round Workers by Educational Attainment Based on 1997-1999 Work Experience

(In millions of 1999 dollars)

- Doctoral degree: $3.4
- Professional degree: $4.4
- Master’s degree: $2.5
- Bachelor’s degree: $2.1
- Associate’s degree: $1.6
- Some college: $1.5
- High school graduate: $1.2
- Not high school graduate: $1.0

Census Bureau, *The Big Payoff: Educational Attainment and Synthetic Estimates of Work-Life Earnings*
Present Value of Lifetime Earnings (2)

- High school graduate, 31.48%
- Bachelor's degree, 17.48%
- Associate's degree, 8.19%
- Some college, 19.01%
- Master's degree, 6.18%
- Doctoral degree, 1.12%
- Professional degree, 1.40%
- Not high school graduate, 15.14%

2007 population by degree status
Present Value of Lifetime Earnings (3)

<table>
<thead>
<tr>
<th>Degree</th>
<th>1994 SWE ($M)</th>
<th>2007 ($M)</th>
<th>Population fraction</th>
<th>Contribution ($M 2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctoral degree</td>
<td>3.4</td>
<td>4.2</td>
<td>1.12%</td>
<td>0.05</td>
</tr>
<tr>
<td>Professional degree</td>
<td>4.4</td>
<td>5.5</td>
<td>1.40%</td>
<td>0.08</td>
</tr>
<tr>
<td>Master's degree</td>
<td>2.5</td>
<td>3.1</td>
<td>6.18%</td>
<td>0.19</td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>2.1</td>
<td>2.6</td>
<td>17.48%</td>
<td>0.45</td>
</tr>
<tr>
<td>Associate's degree</td>
<td>1.6</td>
<td>2.0</td>
<td>8.19%</td>
<td>0.16</td>
</tr>
<tr>
<td>Some college</td>
<td>1.5</td>
<td>1.9</td>
<td>19.01%</td>
<td>0.36</td>
</tr>
<tr>
<td>High school graduate</td>
<td>1.2</td>
<td>1.5</td>
<td>31.48%</td>
<td>0.47</td>
</tr>
<tr>
<td>Not high school graduate</td>
<td>1.0</td>
<td>1.2</td>
<td>15.14%</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Average SWE ($M 2007) 1.94

BLS inflator 1999-2007: 1.2446

SWE = synthetic work-life earnings
Portney’s Approach – Household MROD

The probability of at least one member of the household dying is

\[ROD_{\text{household}} = 1 - \sum_{i}^{N} (1 - ROD_i) \]

\[N = \text{number in household} \]

The marginal probability is

\[MROD_{\text{household}} = \sum_{j}^{N} MROD_j \sum_{i \neq j}^{N} (1 - ROD_i) \]

So, for small \(N \)

\[MROD_{\text{household}} \approx \sum_{j}^{N} MROD_j \]
Portney’s Approach – Calculating the VSL

The number of households for which one statistical life is saved with a 1 $\mu g/m^3$ reduction of TSP is

$$P_{\text{households}} = \frac{1}{MROD_{\text{household}}}$$

If these households have an average WTP for a 1 $\mu g/m^3$ reduction in TSP, then their aggregate marginal willingness to pay (MWTP) is the value of the statistical life saved. That is

$$VSL = MWTP \times P_{\text{household}}$$

Or

$$VSL = \frac{MWTP}{MROD_{\text{household}}}$$