Sample Exam 2 Problems

Problems involving two dimensional elements

1. For the bilinear membrane finite element in PLANE STRESS shown in the figure,
 \(E = 30 \times 10^6 \, N/m^2 \) and \(\nu = 0.3 \). Forces are applied at the nodes that produce
 displacements \(v_1 = 0.01 \, m \) and \(u_3 = -0.01 \, m \) while keeping
 \(u_1 = u_2 = u_4 = v_2 = v_3 = v_4 = 0 \).
 a) Write the bilinear shape functions for the element (15 points)
 b) Find the matrix \(\mathbf{B} \) for the element (15 points)
 c) Find the strains in the element at the point \((x, y) = (1, 1) \) (10 points)
 d) Find the stresses in the element at the \((x, y) = (1, 1) \) (10 points)

2. The triangular element in the figure has \(E = 70 GPa \), \(\nu = 0.3 \), and is such that the shape
 functions \(N_1(x, y) \) and \(N_2(x, y) \) are 0.15 and 0.25, respectively, when evaluated at the
 point \(P \). The nodal coordinates are given in \(m \).
 a) Determine the \(x \)- and \(y \)-coordinates of point \(P \) (20 pts)
 b) If the element is in a state of plane stress, and the displacements are zero except for
 \(u_3 = 0.001 \, m \) and \(v_3 = 0.001 \, m \). Find the strains in the element (20 pts)
1. The **PLANE STRESS** triangle in the figure is subjected to the distributed load $p_x(y) = 2,000(5 - x) \, N/m$ on its left side. If $E = 2\, MPa$ and $\nu = 0.3$:
 a) Find the shape functions (5 points)
 b) Find the load equivalent nodal forces (15 points)
 c) Find the matrix B (10 points)
 d) Find the displacements at node 1 (15 points). (HINT: you only need the upper left 2 x 2 part of the element stiffness matrix)
 e) Find the stresses in the element (5 points)

2. For the plane stress triangle in the figure, determine the forces at the nodes necessary to produce the displacements:
 $\begin{align*}
 u_1 &= 0.0 \quad \nu_1 = 0.01 \\
 u_2 &= 0.0 \quad \nu_2 = 0.0 \\
 u_3 &= 0.01 \quad \nu_3 = 0.0
 \end{align*}$
 The material properties are (60 points)
 $E = 10^7 \, lb/in^2, \, \nu = 0.3$ and $t = 0.1in$.

(HINT image for diagram)
Sample exam problems involving thermal stresses

1. In the one dimensional system shown the central rod element 3-4 is heated to a temperature T. If the Young’s modulus of the bars is E and the thermal expansion coefficient is α, calculate: a) The displacements at the nodes (15 pts.)
 b) The stresses in the bars (15 pts.)

![Diagram of a one dimensional system with nodes 1, 2, 3, 4, 5, 6 and a central rod element 3-4, with L, βL, and L labeled.]

2. Three rod elements are connected to a foundation as shown. All elements have a cross-sectional area $A = 2\text{in}^2$ and Young’s modulus $E = 30 \times 10^6 \text{psi}$. If the central element is heated to a temperature $T = 50 \text{F}$ above the other elements and the coefficient of thermal expansion of the central element is $\alpha = 6.0 \times 10^{-6} (\text{in/in})/\text{F}$ find the deflections and stresses in the structure. (40 pts.)

![Diagram of three rod elements connected to a foundation with a central element heated to T above the other elements, with angles θ, 30in, 40in, and 40in labeled.]

3. Three elastic rods are placed between a rigid support and a rigid flange. The block is at a distance δ from another rigid part. All three rods have a cross-sectional area A, Young’s modulus E and thermal expansion coefficient α. The middle rod is fully insulated from the rest of the system and is heated by a coil. Find the value of the temperature T at which the gap δ becomes closed (25 pts.)

![Diagram of three elastic rods between a rigid support and a rigid flange with a middle rod heated to T°, and gap δ labeled.]