Hyperbaric Physiology

The Rouse Story

• Oct 12, 1992, off the New Jersey coast
• father/son team of experienced divers
• explore submarine wreck in 230 ft (70 m)
• breathing compressed air
• trapped in wreck & escaped with no time for decompression

Arrival at recompression facility

• Both divers directly ascend to dive boat
• Helicopter arrives at boat in 1 hr 27 min
• Bronx Municipal Hospital recompression facility
 – Chris (39 yrs) pronounced dead
 – Chrissy (22 yrs)
 • coherent and talking
 • paralysis from chest down
 • no pain
 • blood sample contained foam

Recompression efforts

• Recompression starts about 3 hrs after ascent
 – put on pure O2 and compressed to 60 ft
 • extreme pain as circulation returned
 – compressed to 165 ft, then over 5.5 hrs gradually ascended back to 30 ft., lost consciousness
 – back to 60 ft. Heart failure and death
• autopsy revealed that the heart contained only foam

Medical Debriefing

• Doctors conclusions regarding their treatment
 – nothing short of recompression to extreme depths - 300 to 400 ft
 – saturation treatment lasting several days
 – complete blood transfusion
 – deep helium recompression

Gas Laws

• Boyle’s Law
 – $P_1V_1 = P_2V_2$
• Dalton’s Law
 – total pressure is the sum of the partial pressures
• Henry’s Law
 – the amt of gas dissolved in liquid at any temp is proportional to it’s partial pressure and solubility
Gas problems during diving

- Rapture of the deep (Nitrogen narcosis)
- Oxygen toxicity
- Hypoxia
- Contaminated gases
- Hypercapnia

Martini’s Law

- Every fifty feet of depth is approximately equal to drinking one martini on an empty stomach (increased N2 in tissues)
- euphoria at > 30m
- at pressures > 100m, unconsciousness
- determines a physical limit for breathing air at depth
- no apparent adaptation in humans

Narcotic gases

- All Noble gases cause narcosis
 - outer shell filled with electrons
- chemically inert but narcotic properties depend on their solubility in body fat
- mechanism for narcosis is unknown (cell membrane)

| Table 13.1: Relative Narcotic Potency of inert Gases |
|-----------------|-----------------|-----------------|-----------------|
| Molecule | Molecular Weight| Solubility | Narcotic Index |
| Hydrogen | 3 | 2.1 | 0.60 |
| Helium | 4 | 1.7 | 1.38 |
| Nitrogen | 28 | 2.1 | 1.08 |
| Oxygen | 32 | 2.2 | 1.40 |
| Argon | 40 | 2.1 | 2.5 |
| Krypton | 84 | 5.6 | 3.6 |
| Xeon | 152 | 2.0 | 25.7 |

Oxygen Toxicity

- Occurs from breathing 100% O2 too long
 - in 1 ATM, > 12hrs
- Occurs from pressuring a gas mixture
 - in 7 ATM, > 5 min
- Symptoms
 - coughing, mild irritation under sternum, burning in trachea or bronchi
 - convulsions

High Pressure Nervous Syndrome (HPNS)

- Increasing pressure reverses the effects of narcosis
 - hyper-excitability effect
 - mechanism is also unknown
 - fluidity of membranes, NT release, post-synaptic effects?
- Forms a barrier to very deep diving
 - HPNS at pressures > 200m
Symptoms of HPNS
- Rapid tremor, poor coordination, involuntary jerking movements, microsleep
- No evidence of adaptation in humans
- Addition of narcotic gases decreases the effect and increases max depth
 - Trimix (helium, nitrogen, oxygen)
 - Heliox (helium and oxygen)
 - Nitrox (air enriched with oxygen)
- HPNS limits the max depth humans can dive

Mixed gases
- Prevents HPNS
- Reduces gas density
 - Work of breathing increases with depth as gas density increases
 - Helium and hydrogen are much less dense than air
 - Mixed with O2 will support ventilation with light work at depths as deep as 1500m
- Controls oxygen level (↓O2 as ↑depth)

Breathe hold diving
- Oldest form of diving
 - 4500 BC artifacts
 - Ama divers
- Time limitations
 - Usually about 60 s
 - Hyperventilation, 4.5 min
 - World record, 7 min 41 s
 - Hyperven. + O2, 20.1 min
- Risks
 - Blackout
 - Barotrauma

Hyperbaric injuries
- Lung squeeze (30 m or more)
 - TLC < RV
 - Fluid is drawn into alveoli
 - Alveoli rupture
 - Pneumothorax
- Middle ear squeeze
 - Affects 40% of divers

Hyperbaric injuries, cont.
- Sinus squeeze (infection and allergies)
- Face-mask squeeze (ruptured eye vessels)
- GI barotrauma (chew gum, carbonated fluids, beans)
- Alternobaric vertigo (unequal middle ear pressure)
- Air embolism (failure to breathe out during ascent)
 - Has occurred in depths as little as 6 ft

Decompression Sickness
- Caissons used in 1840 to build bridges
 - Bends, chokes, staggers (vestibular system)
- Nitrogen forms bubbles during ascent
- Occurs after dives > 30 m
- Symptoms usually appear within 3 hrs of completing the dive
 - Joint pain
 - Neurological hits, paralysis, confusion
 - Skin mottling
DCS Tables history

• Paul Bert--first described DCS
• JS Haldane--developed first DCS tables
 – descend rapidly, spend limited time on the bottom, ascend slowly to the surface in stages
 – ascend 1/2 way rapidly
 – ascend set amounts and stop

Decompression Tables

Dysbaric Osteonecrosis

• Divers with a history of DCS
• 20% in divers who work below 200m
• bubbles reduce capillary flow to bone and cause bone cells to die
• damage mainly in the end of long bones

Open Circuit Scuba Gear

• Air is fed with a demand regulator at ambient pressure
• air is exhaled to the water forming bubbles

Closed Circuit Scuba Gear

• Air is fed to the diver with a demand regulator at ambient pressure
• 100% O2 is recycled through a CO2 scrubber
• depth is limited
 – to < 8m for pure O2
 – to < 25m with 60% O2, 40% air
• must purge nitrogen periodically
• No bubbles

Jacques Cousteau and Emile Gagnan developed the demand value in 1943
Carbon Dioxide Toxicity
- Occurs with closed systems
 - diving for > 4-6 hrs
 - headache is usually the critical first warning
- Occurs at depth due to pressure
 - First described by JBS Haldane
 - Br sub Thetis sunk in 1939, 99 men died only 4 escaped
 - small escape chamber where men exhaled and CO2 increased to 6%
 - when escape pressure was pressurized to 10 ATM, CO2 effect became fatal

CO₂ symptoms

Cardiac arrhythmias
- Common during diving even in young divers
 - 22 x more arrhythmias when submerged
- Why?
 - blood pressure increase with breathe hold
 - pressure from wet suit on the carotid sinus
 - fatigue, dehydration, cold
 - increased central blood volume

Drowning
- A Perfect Storm pgs 179-186
- A graphic description of what it feels like to drown
 - based on report by James Lowson 1892
 - shipwreck survivor
- stages of drowning
 - struggling to hold breath
 - must breathe, water triggers laryngeal spasm
 - pain recedes, euphoric feeling, final thoughts
 - unconsciousness

Susceptible Populations for DCS
- Females?
 - Greater body fat (∆ nitrogen dissolved in fat)?
 - increased symptoms during menstruation
 - don’t dive when pregnant!
- Age effect
 - > in middle-aged than younger men
- Foramen Ovale
 - inadequate closure of hole between right and left atria in 25% of people
 - bubbles may occur in the cerebral circulation

Other precautions
- Avoid dehydration
- no strenuous exercise 6 hrs after diving
- do not fly for at least 12-24 hrs after diving
- increase decompression time when diving at altitude
Limits

- 30m, nitrogen narcosis (limit for air)
- 30 - 200m, oxygen toxicity and increased work of breathing (breathe mixed gases)
- > 200m HPNS, breathe trimix gas
- 450m, limit for open sea diving
- 600m, limit with pressure chamber

Saturation Diving

- Live and work at depths up to about 300m to avoid lengthy decompression
 - breathe heliox
 - following 100m, 4 d decompression
 - following 300m, 10 d decompression
- helium speech unscrambler
- 30°C living quarters

The abyss

- Abyssal plains
- need pressure-resistant vessels
 - 1620, first submarine (Cornelius Drebbel)
 - 1934, bathysphere, William Beebe and Otis Barton
 - 1940, bathyscaphe, Auguste Piccard
 - 1960, Trieste lands in Mariana Trench

1985 Alvin discovers the Titanic