Blood Pressure during Exercise
- Sources of Error
- Normal response
- Hypertensive response
- Hypotensive response
- Recovery blood pressures

Guidelines for accurate manual blood pressure
- subject sitting quietly at least 5 min
- no caffeine (1 hr), no smoking (15 m)
- arm muscle relaxed and flexed slightly
- inflate cuff 20-30 mmHg above SBP
- deflate slowly (3mmHg/s)
- record 1st and 5th sounds
- do not re-measure for a full minute

What if you can't hear Korotkoff sounds?
- Have the subject raise their arm and open and close their hand 5-10 times
 - this dilates the blood vessels of the deeper extremities
- Try again

BP cuff size and placement?
- Lower edge at least 1 inch above the antecubital space
- bladder width at least 40% of the circumference, centered over the brachial artery
 - too small will over-estimate bp
 - too large will under-estimate bp
 - 5 inch wide for normal adults
 - 1.5 inches (infants) to 8 inches (obese)

Korotkov Sounds
- Phase 1
 - appearance of a clear tapping sound
- Phase 2
 - soft murmurs
- Phase 3
 - louder murmurs as blood flow increases
- Phase 4
 - sound is suddenly muffled
- Phase 5
 - sounds disappear

Human Hearing and BP
- Auscultation Method
 - Korotkoff sounds
 - 18-26 Hz for systole
 - 5-50 Hz for diastole
- Human ear
 - lowest intensity, 16 Hz
 - best range, 200-4000 Hz
 - human speech, 12-250 Hz
Systolic 18-26 Hz
Diastolic 5-50 Hz

3 Sources of Error
- Observer bias
 - habitually record the pressure higher or lower
 - round to nearest 0 or 5 digit
- Faulty equipment
 - cuff size
 - calibration
- Poor technique
 - deflation rate (3-5 mm/s)

Measurement Site
- R or L arm
- central, brachial, radial, finger

“Normal” BP response

Normal BP Response

Resting Hypertension Type 1
- hypertension at rest
- bp increases at same rate or faster than normals
- higher peak systolic bp
- pressure may continue to rise after exercise and stay high
- failure to reduce TPR
- exercise may not be a good treatment
Resting Hypertension Type 2
• Second case
 – hypertension at rest
 – less rise in bp
 – normal peak systolic bp
 – normal decrease in TPR
 – exercise may be a good therapeutic measure

Labile Hypertension Response
• Normal resting blood pressure
• higher than expected rise in bp with exercise
 – increased risk of hypertension
 – in older men, a predictor of mortality from CAD

BP response in CAD patients
• A rise in sbp with exercise is a good sign
• Failure to increase sbp indicates ischemia and decreased ventricular function
• A rise in dbp of > 20% is a sign of ischemia, occlusion, lower ejection fraction

Hypotensive Exercise Response
• Systolic hypotension, cause?
 – severe ischemia, decreased ventricular function
 – activation of ventricular mechanoreceptors, a vasovagal reflex?
• Exertional hypotension (bp < resting)
 – as reliable as ST depression in predicting severe CAD

Recovery Blood Pressure
• Normal responses
 – rapid fall in bp
 – temporary rebound (1 min) then a rapid fall
• CAD
 – fails to fall as fast as normal subjects
 – 20% had an increase in SBP

Drugs that may alter the blood pressure response
• Antihypertensives
 – can significantly reduce exercise bp response
 • ace inhibitors (A-II converting enzyme)
 • angiotensin II receptor blockers
 • beta blockers
• Diuretics
 – usually affect resting bp but not exercise
• Psychoactive drugs (tranquilizers)
 – moderate bp changes during exercise
Blood Pressure Lab

- Compare manual bp readings on the right and left arm
- Compare resting bp readings--brachial manual and finger finapres
- Measure manual and continuous bp readings during recovery and look for the over-shoot response
- Compare bp response to resistive exercise--normal breathing and breathe holding

Finapres (Portapres)

- A beat-to-beat blood pressure measurement
- Measures pulse pressure from the middle finger

Tonometer

- Measures pressure pulse over the radial artery
- Beat by beat blood pressures

Conclusions

- Blood pressure readings during exercise provide information about
 - Vasoconstriction (DBP)
 - ventricular function (SBP)
 - future hypertension