University of New Mexico Department of Electrical and Computer Engineering

ECE 321 – Electronics I (Fall 2009) Exam 1

Name:

Date: Sept. 25, 2009

Note: Only calculator, pencils, and pens are allowed.

- **1.** (10 points) True or false:
 - (a) In a PMOS, the potential of Drain is higher than the potential of Source. ()
 - (b) The width of depletion region in a PN junction increases, by increasing the applied reverse bias voltage. ()
 - (c) The minority carriers in a semiconductor doped with acceptor atoms are electrons. ()
 - (d) The change of drain current in saturation region due to V_{DS} change (i.e. factor of (1+ λV_{DS})) is called "body effect". ()
 - (e) The threshold voltage of an NMOS is normally negative. ()
- **2.** (10 points) Draw the logic gate implementation for the Boolean function $F=\overline{A(B+C)}$.

3. (20 points) Determine the width of the depletion region and the junction capacitance of a PN⁺ junction when it is connected to a 1V reverse bias potential. The doping concentration of P and N+ are $N_A=10^{15}$ cm⁻³ and $N_D=10^{19}$ cm⁻³, respectively, and the junction area is 0.25µmx0.25µm. The relative permittivity of silicon is 11.9, V_{th}=25.9 mV at 300°K, n_i=1.45x10¹⁰ cm⁻³ at 300°K, and $\epsilon_0=8.854x10^{-14}$ F/cm.

Hint: You may use the following equations:

$$V_{bi} = V_{th} Ln\left(\frac{N_A \cdot N_D}{n_i^2}\right) \qquad \qquad W = \sqrt{\frac{2\varepsilon_{si}}{q} \frac{N_A + N_D}{N_A \cdot N_D} (V_{bi} - V_D)}$$

- 4. (20 points) The following figure is cross sectional view of an MOS device.
 - (a) What type is this device (NMOS or PMOS)?
 - (b) Considering the potential of each terminal in this figure, determine Source, Drain, Gate, and Substrate terminals and label them on the diagram.
 - (c) Assuming that $|V_T| = 0.5 v$. Find the region of operation of the device. Ignore body effect.
 - (d) Determine drain current if $|K'| = 100 \ \mu A/v^2$, (W/L) = 10, and $|\lambda| = 0.1 \ v^{-1}$.
 - (f) Draw <u>depletion region</u> and the <u>channel</u> on the diagram. What is the potential <u>across the channel</u> in this device?

5. (20 points) Calculate the currents I and I_{D2} , and the voltage V in this diode circuit. Assume that the forward bias diode voltage is 0.7 V. Specify the whether D_1 and D_2 are in forward bias or reverse bias.

- 6. (20 points) The following circuit is called "current mirror". Assume that the physical parameters of M_2 is the same as M_1 , except that M_2 is N times larger than M_1 (i.e. $(W/L)_2=N^*(W/L)_1$)
 - (a) Determine the region of operation for M₁.
 - (b) Based on your answer to part (a), find V_x as a function of K'_n , I_{Ref} , V_T , $(W/L)_1$.
 - (c) Assume that R_L is chosen such that M_2 is in saturation region. Find I_L as a function of V_x , then use your V_x equation form part (b) to simplify the result.
 - (d) Determine the range of R_L that guarantees saturation region for M_2 .

