ECE 321 – Electronics I (Fall 2009) Exam 2

Name:

Date: Oct. 23, 2009

Note: Only calculator, pencils, and pens are allowed.

- **1.** (10 points) True or false:
 - (a) In a CMOS inverter, the maximum short circuit current occurs when the input voltage is at the switching threshold voltage. ()
 - (b) By definition, V_{\rm IL} is maximum input voltage of a logic gate that still can be detected as zero. ($\,$)
 - (c) The dynamic power in a CMOS inverter is the amount of power that is consumed in the load capacitor. ()
 - (d) To have a better noise margin in logic gates, it is better to maximize V_{oH} and minimize $V_{\text{IH}}.$ (~)
 - (e) In a CMOS inverter, reducing the NMOS threshold voltage, $V_{tn},$ reduces the low-to-high propagation delay, $t_{pLH}.\ ($
- 2. (15 points) Compute the leakage power consumption in a CMOS inverter that is used in a clock distribution network of a digital circuit using 90nm technology node. Assume that the V_{DD} is 1.2 V, $I_{OFF(NMOS)}$ =12 nA/um, and $I_{OFF(PMOS)}$ =26 nA/um, (W/L)_n= 650, (W/L)_p= 950, and L=90nm.

- **3.** (20 points) You are given two digital systems, A and B, and are asked to connect the outputs of system A to the inputs of system B. The power supply voltage for system B is 1.5V, but the power supply voltage of system A is slightly less; at 1.2V.
 - (a) Assume that all the logic gates inside systems A and B can be treated as CMOS inverters. Determine V_{OH} and V_{OL} for the outputs of system A?
 - (b) For the system B, assume that V_{IL} =0.2 and V_{IH} =1.3. Draw the noise margin map and compute NMH and NML.
 - (c) Explain why the overall system won't work.

4. (30 points) We would like to design an inverter to drive a long interconnect (clock line) with effective capacitance of 10 pF. By computing the <u>average current</u> that charges/discharges C_L, determine (W/L)_P such that $t_{PLH} = 250$ ps. Assume that $V_{DD} = 2.5V$, $V_{tp} = -0.4$ V, and $K'_{p} = -60 \mu A/V^2$.

5. (25 points) In an ideal CMOS inverter, V_{OH} is equal to V_{DD} . However, the NMOS leakage may slightly reduce V_{OH} . In this problem, we want to calculate the V_{OH} in the presence of NMOS leakage. To measure V_{OH} , you connect the input to the ground, where the PMOS is in *linear region* and the NMOS is in cut off region. However, in the presence of leakage, you can approximate that the NMOS behaves like a current source with the current of $I_{OFF(NMOS)}$ as shown in the circuit below. Compute V_{OH} , if $I_{OFF(NMOS)}=1 \ \mu$ A, $V_{DD}=1.0 \ V$, $V_{tp}=-0.4 \ V$, $K'_p=-40 \ \mu$ A/V², and $(W/L)_p=2$.

