# University of New Mexico <br> Department of Electrical and Computer Engineering 

## ECE 321 - Electronics I (Fall 2009)

## Exam 3

Name: $\qquad$ Date: Nov. 18, 2009

Note: Only calculator, pencils, and pens are allowed.

1. (10 points) Fill in the blank:
(a) In standard CMOS process, the source and drain are formed by using
$\qquad$ layer masks.
(b) The process of manufacturing transistors is called $\qquad$ and the process of manufacturing interconnects is called $\qquad$ .
(c) CMP stands for $\qquad$ .
(d) The effective width of two series NMOS with $\mathrm{W}_{1}=6$ um and $\mathrm{W}_{2}=3 \mathrm{um}$ is $\qquad$ .
(e) Electromigration is $\qquad$ .
2. (20 points) You are asked to layout the power and ground bus in the layout of a logic block in a real chip. Assume that the logic block draws 80 mA of current and the metal thickness is 0.4 um . If the maximum current density $\mathrm{J}_{\max }=2 \times 10^{6} \mathrm{~A} / \mathrm{cm}^{2}$, determine the minimum width (in micron) of the interconnect that is needed to power the logic block.
3. (30 points) A three-input CMOS NAND gate is designed as shown below. Assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{\prime}=90 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=0.4 \mathrm{~V}, \mathrm{~K}_{\mathrm{p}}^{\prime}=50 \mathrm{uA} / \mathrm{V}^{2}$, and $\mathrm{V}_{\mathrm{tp}}=-0.5 \mathrm{~V}$ in the 100 nm technology node.
(a) Determine the width of NMOS and PMOS transistors in this NAND gate, such that the worst case delay becomes equivalent to a referenced inverter with $\mathrm{W}_{\mathrm{n}}=1 \mathrm{um}$ and $\mathrm{W}_{\mathrm{p}}=2 \mathrm{um}$.
(b) For the device sizes found in part (a), determine the switching threshold voltage, $\mathrm{V}_{\mathrm{M}}$, when all inputs are tied together.
(c) Find the maximum $I_{D D}$ current for this NAND gate.

4. (40 points) We would like to design the following circuit such that the worst case propagation delays ( $\mathrm{t}_{\mathrm{pHL}}$ and $\mathrm{t}_{\mathrm{pLH}}$ ) are limited to 2.14 ns . Use Elmore delay equation to determine the W/L for PMOS and NMOS used in the 3-input NAND gate.
Assume that $V_{D D}=1.2 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}^{\prime}=90 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\text {tn }}=0.4 \mathrm{~V}, \mathrm{~K}_{\mathrm{p}}^{\prime}=50 \mathrm{uA} / \mathrm{V}^{2}$, and $\mathrm{V}_{\text {tp }}=-0.5 \mathrm{~V}$ in the 100 nm technology node. Also assume that the transistors stay in saturation region for the length of the transition.

