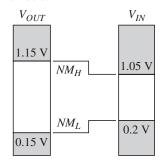
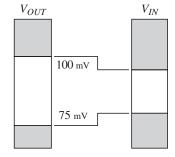
## References

book


**Exercises** 

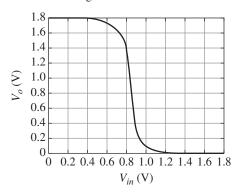
[1] F. A. Linholm IEEE J. Solid State Circuits, SC-10, 2, pp. 106-109, April 1975.


## **Exercises**

Inverter Static Voltage Characteristics

**5-1.** A CMOS inverter has  $V_{DD} = 1.2$  V.  $V_{OH} = 1.15$  V,  $V_{OL} = 0.15$  V,  $V_{IH} = 1.05$  V, and  $V_{IL} = 0.2$  V. Calculate  $NM_H$ ,  $NM_L$  and draw the noise margin map with appropriate labels of numbers.

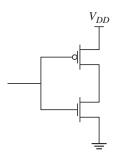



- **5-2.** A logic gate noise margin parameters are:  $V_{IH} = 1.6 \text{ V}$ ,  $V_{IL} = 0.3 \text{ V}$ ,  $V_{OH} = 1.7 \text{ V}$ , and  $V_{OL} = 0.2 \text{ V}$ .
  - (a) Calculate  $NM_H$ .
  - **(b)** Calculate  $NM_L$ .
  - (c) The input voltage is down to 1.7 V and a negative 50 mV noise spike appears. What happens to the circuit fidelity?
  - (d) The input voltage is down to 1.7 V and a negative 150 mV noise spike appears. What happens to the circuit fidelity?
- **5-3.** Given the logic gate noise margins:  $NM_H = 100 \text{ mV}$ ,  $NM_L = 75 \text{ mV}$ , and  $V_{DD} = 2 \text{ V}$ .
  - (a) If  $V_{IH} = 1.75$  V, what is  $V_{OH}$ ?
  - **(b)** If  $V_{IL} = 0.3$  V, what is  $V_{OL}$ ?



**5-4.** A CMOS inverter uses  $V_{DD} = 0.9 \text{ V}$ .  $V_{OH} = 0.8 \text{ V}$ , and  $V_{OL} = 0.1 \text{ V}$ . If the noise margins must be 20% of  $V_{DD}$ , what are  $V_{IL}$  and  $V_{IH}$ ? Draw the noise margin map and label.

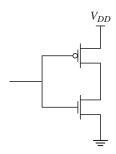



**5-5.** Graphically determine the change in logic threshold of the CMOS inverter transfer curve in the figure if the curve shifts 0.2 V to the right in the midregion.

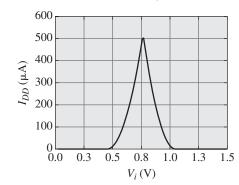


**5-6.** (a) Design the  $W_p/W_n$  ratios of a CMOS inverter for symmetrical static voltage transfer characteristic.  $\mu_n=1400$  cm<sup>2</sup>/V·s,  $\mu_p=500$  cm<sup>2</sup>/V·s,  $V_{tn}=0.35$  V,  $V_{tp}=-0.35$  V, and  $V_{DD}=1.3$  V.

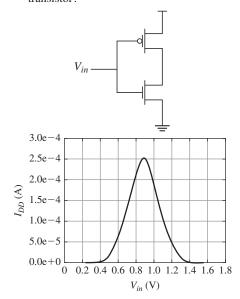
## The CMOS Inverter 154


**(b)** Redesign if  $V_{tp} = -0.45 \text{ V}$ .



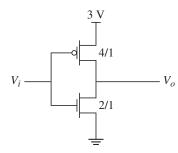

- 5-7. An inverter with a symmetrical voltage transfer curve has a restriction that  $W_p/W_n = 4.6$ .  $V_{DD} = 1.2 \text{ V}, \mu_n = 1530 \text{ cm}^2/\text{V} \cdot \text{s}, \mu_p = 540$ cm<sup>2</sup>/V·s, and  $V_{tp} = -0.4$ . What must  $V_{tn}$  be set to satisfy this condition?
- **5-8.** A CMOS inverter has transistor parameters:  $K_n(W/L)_n = 100 \ \mu \text{A/V}^2, \ K_p(W/L)_p =$ 300  $\mu$ A/V<sup>2</sup>,  $V_{tn} = 0.7$  V,  $V_{tp} = -0.75$  V, and  $V_{DD} = 2.5 \text{ V}$ . What fraction of the total output voltage swing will the nMOS transistor be in saturation?
- **5-9.** A CMOS inverter has its nMOS transistor in nonsaturation and its pMOS transistor in saturation. Given  $K_n = 50 \mu \text{A/V}^2$ ,  $K_p = 25 \mu \text{A/V}^2$ ,  $V_{tn} = 0.5 \text{ V}$ ,  $V_{tp} = -0.6 \text{ V}$ ,  $(W/L)_n = 2$ ,  $(W/L)_p = 4$ ,  $I_{DD} = 11 \mu A$ , and  $V_{DD} = 2$  V, calculate the inverter output voltage  $V_O$ .

Inverter Static Current Characteristics


- **5-10.** Given an inverter with  $V_{DD} = 1.5 \text{ V}$ ,  $V_{tm} =$ 0.4 V, and  $V_{tp} = -0.4$  V, calculate the peak current during the transition if  $(W/L)_n = 3$ ,  $(W/L)_p = 7.5$ ,  $K_p = 50 \,\mu\text{A/V}^2$ , and  $K_n =$ 125  $\mu$ A/V<sup>2</sup>.
- **5-11.** An inverter has  $V_{DD} = 2 \text{ V}$ ,  $V_{tn} = 0.5 \text{ V}$ ,  $V_{tp} =$  $-0.5 \text{ V}, K_n = 300 \ \mu\text{A/V}^2, K_p = 200 \ \mu\text{A/V}^2,$  $(W/L)_n = 2$ , and  $(W/L)_p = 3$ .
  - (a) If  $V_{IN} = 0.8$  V, what is  $I_{DD}$ ?
  - (b) The  $I_{DD}$  solution in part (a) appears twice in the current transfer curve. Use the pMOS equations to calculate the other  $V_{IN}$  value to satisfy the current in part (a).



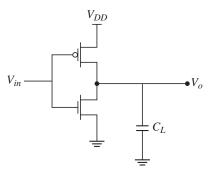
**5-12.** Given  $V_{DD} = 1.5$  V,  $K_p = 70 \mu A$ .  $K_n =$ 120  $\mu$ A,  $(W/L)_p = 150$ , and  $(W/L)_n = 75$ , use the ITC to calculate  $V_{tp}$ .




**5-13.** Given that  $V_{DD} = 1.8 \text{ V}$ ,  $V_{tn} = 0.5 \text{ V}$ , and  $K_n = 100 \,\mu\text{A/V}^2$ , what is W/L of the nMOS transistor?



Exercise 155


**5-14.**  $I_{DD}=40~\mu\text{A},~(W/L)_n=2,~K_n=100~\mu\text{A},~V_m=0.5~\text{V}~K_p=50~\mu\text{A},~V_{tp}=-0.5~\text{V},~\text{and}~V_i<1.5~\text{V}.$  What is  $V_i$ ?



**5-15.** Given an inverter with  $V_m = 0.4$  V,  $V_{tp} = -0.35$  V,  $K_n = 200 \,\mu\text{A/V}^2$ ,  $K_p = 100 \,\mu\text{A/V}^2$ ,  $(W/L)_n = 2$ , and  $(W/L)_p = 3$ , calculate the peak drain current  $I_{peak}$  during an inverter transition for (a)  $V_{DD} = 1.5$  V and (b)  $V_{DD} = 1.0$  V.

Inverter Speed Property

**5-16.** Use the transition time delay model where  $C_L = 30$  fF,  $V_{DD} = 1.5$  V,  $(W/L)_n = 2$ ,  $K'_n = 100 \ \mu\text{A/V}^2$ ,  $(W/L)_p = 5$ ,  $K'_p = 25 \ \mu\text{A/V}^2$ ,  $V_{tp} = -0.35$  V, and  $V_{tm} = 0.35$  V. What is the difference between rise and fall time of the transition if defined between 0 V and 1.5 V?



- **5-17.** If a *p*MOS transistor in an inverter has  $\mu \varepsilon / 2T_{ox} = 28 \ \mu \text{A/V}^2$ ,  $V_{tp} = -0.6 \ \text{V}$ , and W/L = 6, what is the expected additional rise time delay if the gate power supply voltage is reduced from a normal  $V_{DD} = 2.5 \ \text{V}$  to  $V_{DD} = 1.8 \ \text{V}$  with  $C_L = 25 \ \text{F}$ .
- **5-18.** A CMOS inverter has W/L = 6 for both transistors,  $V_{tn} = 0.6$  V,  $V_{tp} = -0.6$  V, and  $V_{DD} = 2.3$  V. If  $V_t$  is reduced to  $|V_t| = 0.2$  V for

both transistors, what is the percent decrease in speed of transition?

Inverter Power

- **5-19.** Calculate the power dissipated by a cardiac pacemaker circuit if  $f_{clk}=32.6$  kHz,  $\alpha=0.1$ ,  $V_{DD}=1.5$  V,  $C_L$  (per gate) = 300 fF, and the number of logic gates = 10 k.
- **5-20.** A clock network has  $C_L = 10$  nF,  $\alpha = 1$ , and  $V_{DD} = 1.2$  V. The maximum power dissipation allowed is 5 W. What is the maximum clock frequency?
- **5-21.** Use Figure 5-12.  $V_{DD} = 0.9 \text{ V}$ ,  $V_{tm} = 0.2 \text{ V}$ ,  $V_{tp} = -0.2 \text{ V}$ ,  $f_{clk} = 3 \text{ GHz}$ , W/L = 3,  $K_n = 250 \,\mu\text{A/V}^2$ , and  $t_r = t_f = 40 \text{ ps}$ . Calculate the mean current during the logic transition and the average power dissipated in the chip.

Power Supply Scaling

- **5-22.** Given an inverter with:  $V_{tm}=0.4 \text{ V}$ ,  $V_{tp}=-0.4 \text{ V}$ ,  $K_n=200 \ \mu\text{A/V}^2$ ,  $K_p=100 \ \mu\text{A/V}^2$ ,  $(W/L)_n=2$ , and  $(W/L)_p=3$ . Calculate the peak drain current  $I_{peak}$  during an inverter transition for (a)  $V_{DD}=1.5 \text{ V}$  and (b)  $V_{DD}=1.0 \text{ V}$ .
- **5-23.**  $P_{sc}$  must be kept under 1 W. The chip has  $V_{DD} = 1.5$  V, one million transistors, and  $\alpha = 0.1$ . Assume that  $10^6$  transistors represent an equivalent 500 k inverters for analysis. What is the mean drain current per inverter?

Sizing and Inverter Buffers

- **5-24.** An output buffer has an input capacitance of 95 fF and a load capacitance of 100 pF. How many inverters are required in a fixed tapered design to minimize the propagation delay?
- **5-25.** A fixed tapered buffer has an input capacitance of 1 pF. If the output stage must drive a load of 54 pF, how many stages are needed?
- **5-26.** The number of tapered buffers in a design must be kept at no more than five to accommodate chip area constraints.
  - (a) If the input gate capacitance is 50 fF, what is the maximum load capacitance that can be driven?
  - **(b)** What is the width ratio of the last inverter  $W_L$  to the first inverter in the chain  $W_{in}$ ?