ECE 321L - Electronics I (Fall 2023)
 Homework \#11

Due in class: Wednesday November 8, 2023

1. Assume that we have an inverter with $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~K}_{\mathrm{n}}=100 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=0.4 \mathrm{~V}, \lambda_{\mathrm{n}}=0.1$ $\mathrm{V}^{-1},(\mathrm{~W} / \mathrm{L})_{\mathrm{n}}=10, \mathrm{~K}_{\mathrm{p}}^{\prime}=60 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tp}}=-0.4 \mathrm{~V}, \lambda_{\mathrm{p}}=0.2 \mathrm{~V}^{-1},(\mathrm{~W} / \mathrm{L})_{\mathrm{p}}=17$.
a) Calculate $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$, and V_{M}
b) Calculate g (slope of VTC).
c) Estimate V_{IL} and V_{IH} from g found in part b.
d) Sketch a rough VTC using the parameters found in parts a through c.
e) Calculate NMH and NML.
f) Assuming that the load capacitance is 100fF and using the average current technique, calculate tpLh and tphl.
g) Assuming that the load capacitance is 100fFand using the average current technique, calculate t_{r} and $t_{\text {. }}$.
2. Assume that $\mathrm{V}_{\mathrm{T} 0}=0.5 \mathrm{~V}, \gamma=0.3 \mathrm{~V}^{1 / 2}$, and $\left|\varphi_{\mathrm{f}}\right|=0.35 \mathrm{~V}$. Calculate the voltages at nodes: $\mathrm{V}_{1}, \mathrm{~V}_{2}$, and V_{o}. Considering the body effect for all transistors.

