University of New Mexico

Department of Electrical and Computer Engineering

ECE 321L – Electronics I (Fall 2023) Homework #11

Due in class: Wednesday November 8, 2023

- **1.** Assume that we have an inverter with $V_{DD}=1.5 \text{ V}$, $K'_n=100 \text{ uA/V}^2$, $V_{tn}=0.4 \text{ V}$, $\lambda_n=0.1 \text{ V}^{-1}$, $(W/L)_n=10$, $K'_p=60 \text{ uA/V}^2$, $V_{tp}=-0.4 \text{ V}$, $\lambda_p=0.2 \text{ V}^{-1}$, $(W/L)_p=17$.
 - a) Calculate $V_{\text{OH}},\,V_{\text{OL}},\,\text{and}\,\,V_{\text{M}}$
 - b) Calculate g (slope of VTC).
 - c) Estimate V_{IL} and V_{IH} from g found in part b.
 - d) Sketch a rough VTC using the parameters found in parts a through c.
 - e) Calculate NMH and NML.
 - f) Assuming that the load capacitance is 100fF and using the average current technique, calculate t_{PLH} and t_{PHL} .
 - g) Assuming that the load capacitance is 100fFand using the average current technique, calculate t_r and t_f .
- **2.** Assume that $V_{T0} = 0.5 \text{ V}$, $\gamma = 0.3 \text{ V}^{1/2}$, and $|\phi_f| = 0.35 \text{ V}$. Calculate the voltages at nodes: V₁, V₂, and V₀. Considering the body effect for all transistors.

