University of New Mexico
 Department of Electrical and Computer Engineering

ECE 321L - Electronics I (Fall 2023)
Bonus Homework
Due in class: Wednesday December 6, 2023

1. Assume that we have an inverter with $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~K}^{\prime}{ }_{\mathrm{n}}=100 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=0.4 \mathrm{~V}, \lambda_{\mathrm{n}}=0.1$ $\mathrm{V}^{-1},(\mathrm{~W} / \mathrm{L})_{\mathrm{n}}=10, \mathrm{~K}_{\mathrm{p}}^{\prime}=60 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\text {tp }}=-0.4 \mathrm{~V}, \lambda_{\mathrm{p}}=0.2 \mathrm{~V}^{-1},(\mathrm{~W} / \mathrm{L})_{\mathrm{p}}=17$. Find $\mathrm{R}_{\text {out }}$. Hint: connect a test capacitor of 100fF to the gate, calculate the LH propagation delay $\left(\mathrm{t}_{\mathrm{pLH}}\right)$ using average current technique, then equate the propagation delay to a simple $R C$ network and find $R_{\text {out }}$. This will effectively be $R_{\text {out(LH) }}$.
2. We plan to use the inverter of problem 1 in the following circuit. Use Elmore technique to compute the time constant and LH propagation delay (tpLH) of the network from the gate input to node 5 .

3. During the evaluate phase, $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=2 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$. Use the charge sharing method, compute the final voltages at the $\mathrm{V}_{\text {out }}$ and 20 fF and 8 fF capacitors. Assume that $\mathrm{V}_{\mathrm{T}}=0.7 \mathrm{~V}$.

4. Sketch the pull up network, and write the scaling values on the schematic for all transistors with respect to the inverter. What is the Boolean function of this complex CMOS logic gate?

5. Compute the leakage power consumption in a CMOS inverter that is used in a clock distribution network of a digital circuit using 90nm technology node. Assume that the VDD is 1.2 V , $\mathrm{I}_{\mathrm{OFF}(\mathrm{NmOs})}=12 \mathrm{nA} / \mathrm{um}$, and $\mathrm{I}_{\mathrm{OFF}(\mathrm{PMOS})}=26 \mathrm{nA} / \mathrm{um},(\mathrm{W} / \mathrm{L})_{\mathrm{n}}=650$, $(W / L)_{p}=950$, and $L=90 n m$.
6. Consider the following sequential circuit with 4 edge-triggered flip-flops and some logic gates. Assume that $\mathrm{t}_{\mathrm{su}}=3 \mathrm{~ns}, \mathrm{t}_{\text {hold }}=2 \mathrm{~ns}$, and $\mathrm{t}_{\mathrm{c} 2 \mathrm{Q}}=1 \mathrm{~ns}$.
(a) Identify the path with the maximum delay (critical path) on the schematic.
(b) What is the maximum operating frequency of this circuit?
(c) Identify the path with minimum delay on the schematic.
(d) Does this circuit violate the hold time constraint? Why?

7. The following circuit is a 4 -input dynamic logic.
(a) Identify the logic function for the output Z.
(b) What input vector imposes the worst case charge sharing during the evaluation time?
(c) Compute the final voltage at Z , if the input vector is $\mathrm{ABCDE}=11000$ during evaluation after charge sharing. Assume that $\mathrm{V}_{\mathrm{t}}=0.4 \mathrm{~V}$.
(d) Determine the width of the PMOS such that the maximum worst case precharge time delay (0 to 90%) is limited to 250ps. (The worst case is when all the inputs are at $V_{D D}$ such that all the intermediate capacitors contribute to the delay). Assume that $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~K}_{\mathrm{p}}^{\prime}=50 \mathrm{uA} / \mathrm{V}^{2}$, and $\mathrm{V}_{\mathrm{tp}}=-0.5 \mathrm{~V}$ in the 100 nm technology node. For simplicity assume that the PMOS will stay in saturation during the transition.

8. Dynamic logic design problem:
(a) Draw the circuit diagram of a dynamic logic that performs $\boldsymbol{Z}=\overline{\boldsymbol{A}+\boldsymbol{B}(\boldsymbol{C}+\boldsymbol{D})}$.
(b) Determine the width of NMOS transistors, such that the worst case $t_{\text {pHL }}$ delay becomes roughly equivalent to a referenced inverter with $\mathrm{W}_{\mathrm{n}}=1 \mathrm{um}$ and $\mathrm{W}_{\mathrm{p}}=2 \mathrm{um}$.
