Exercises

Compensation Doping

- **2-11.** If $N_D = 10^{18}$ cm⁻³ and $N_A = 10^{16}$ cm³, calculate the minority carrier dopant concentration at T = 300 K.
- **2-12.** Repeat Problem 2.11 if the temperature is elevated 50°C.
- **2-13.** In a compensated semiconductor, $p_o = 4 \times 10^6 \text{ cm}^{-3}$ and $N_D N_A = 4.99 \times 10^{18} \text{ cm}^{-3}$. What is the temperature for this condition?
- **2-14.** If T = 390 K, $N_D = 5 \times 10^{18}$, and minority carrier concentration is 1.1×10^6 cm⁻³, what is the minority carrier doping concentration in a compensated semiconductor?

Carrier Transport—Drift Current

- **2-15.** A *p*-silicon material has $p_o = N_A = 10^{18}$ cm³ at 280 K. $\mu_n = 1500 \text{ (cm}^2/\text{V} \cdot \text{s)}$, and $\mu_p = 500 \text{ (cm}^2/\text{V} \cdot \text{s)}$. The semiconductor has 1 V across a 20 μ m dimension.
 - (a) What is the electric field in V/cm?
 - (b) What is the electron carrier density n_o ?
 - (c) What is the current density J (A/cm²)?
 - (d) What is the current density $J (A/\mu m^2)$?
- **2-16.** (a) Neglect minority carrier current density in an *n*-doped semiconductor. If $\mu_n = 1200$ cm²/V·s at T = 325 K, $N_D = 10^{18}$ and current density is $J_n = 10$ kA/cm², what is the electric field?
 - (b) If 2 V causes this E-field across the material, what is the material dimension in microns?
- **2-17.** What are the conductivity and resistivity in Problem 2.16?
- **2-18.** The current density is $J = 300 \text{ A/cm}^2$, conductivity $\sigma = 0.5 \text{ A/V} \cdot \text{cm}$, and $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$. What is the donor doping concentration?

Carrier Transpor-Diffusion Current

- **2-19.** If an electron concentration gradient is 4×10^{18} electrons/cm³ and $D_n = 25$ cm²/s, what is the diffusion current?
- **2-20.** $D_n = 35 \text{ cm}^2/\text{s}$, $D_p = 12 \text{ cm}^2/\text{s}$, $J = 15 \text{ mA}/\text{cm}^2$, the free electron concentration gradient

is three times that of the free hole concentration. What are the free carrier concentration gradients?

- **2-21.** At room temperature, $D_n = 35 \text{ cm}^2/\text{s}$ and $D_p = 10 \text{ cm}^2/\text{s}$. What are μ_n and μ_p ?
- **2-22.** At room temperature $\mu_n = 1300 \text{ (cm}^2/\text{V} \cdot \text{s})$ and $\mu_p = 400 \text{ (cm}^2/\text{V} \cdot \text{s})$. If electron and hole concentration gradients are 10^{20} cm^{-1} and 10^{17} cm^{-1} , what is total current density?

pn Junction Diodes

- **2-23.** A *pn* junction has $N_A = 10^{15} \text{ cm}^{-3}$, $N_D = 10^{16} \text{ cm}^{-3}$, and T = 300 K. Calculate V_{bi} .
- **2-24.** A pn junction has $N_D = 10^{18} \text{ cm}^{-3}$ and $N_A = 10^{16} \text{ cm}^{-3}$. (a) Calculate V_{bi} at T = 300 K. (b) Calculate V_{bi} at T = 400 K.
- **2-25.** Calculate the built-in potential of a *pn* junction if T = 345 K, acceptor doping is 10^{18} cm⁻³, and donor doping is 10^{15} cm⁻³.
- **2-26.** If $N_D = 10^{17}$, T = 300 K, and $V_{bi} = 0.725$ V, what must N_A be set at?
- **2-27.** If $N_D = 10^{17}$, T = 420 K, and $V_{bi} = 0.725$ V, what must N_A be set at?
- **2-28.** A diode has $I_s = 10$ pA, T = 300 K, and $V_D = 0.625$ V. What is the diode current I_D ?
- **2-29.** The diode equation is $I_D = I_S (e^{V_D/V_T} 1)$. The -1 term becomes negligible with respect to the exponential in most forward bias situations and can be neglected. At what value of V_D does the exponential become ten times greater than the one term? Assume room temperature.
- **2-30.** A silicon *pn* junction is operating in the forward bias region. Determine the increase in forward bias voltage that will cause a factor of 100 increase in the diode current. Assume room temperature.

pn Junction Capacitance

2-31. A *pn* junction diode has $C_{j0} = 2$ pF and $V_{bi} = 0.65$ V. Calculate the reverse bias depletion capacitance for reverse bias voltages of 1 V, 2 V, and 3 V.