Exercises

References

[1] F. A. Linholm IEEE J. Solid State Circuits, SC-10, 2, pp. 106–109, April 1975.

Exercises

Inverter Static Voltage Characteristics

5-1. A CMOS inverter has $V_{DD} = 1.2$ V. $V_{OH} = 1.15$ V, $V_{OL} = 0.15$ V, $V_{IH} = 1.05$ V, and $V_{IL} = 0.2$ V. Calculate NM_H , NM_L and draw the noise margin map with appropriate labels of numbers.

- **5-2.** A logic gate noise margin parameters are: $V_{IH} = 1.6 \text{ V}, V_{IL} = 0.3 \text{ V}, V_{OH} = 1.7 \text{ V}, \text{ and} V_{OL} = 0.2 \text{ V}.$
 - (a) Calculate NM_H .
 - (**b**) Calculate NM_L .
 - (c) The input voltage is down to 1.7 V and a negative 50 mV noise spike appears. What happens to the circuit fidelity?
 - (d) The input voltage is down to 1.7 V and a negative 150 mV noise spike appears. What happens to the circuit fidelity?
- 5-3. Given the logic gate noise margins: $NM_H = 100 \text{ mV}$, $NM_L = 75 \text{ mV}$, and $V_{DD} = 2 \text{ V}$.
 - (a) If $V_{IH} = 1.75$ V, what is V_{OH} ?

5-4. A CMOS inverter uses $V_{DD} = 0.9$ V. $V_{OH} = 0.8$ V, and $V_{OL} = 0.1$ V. If the noise margins must be 20% of V_{DD} , what are V_{IL} and V_{IH} ? Draw the noise margin map and label.

5-5. Graphically determine the change in logic threshold of the CMOS inverter transfer curve in the figure if the curve shifts 0.2 V to the right in the midregion.

5-6. (a) Design the W_p/W_n ratios of a CMOS inverter for symmetrical static voltage transfer characteristic. $\mu_n = 1400$ cm²/V · s, $\mu_p = 500$ cm²/V · s, $V_{tn} = 0.35$ V, $V_{tp} = -0.35$ V, and $V_{DD} = 1.3$ V.

154

(**b**) Redesign if $V_{tp} = -0.45$ V.

- **5-7.** An inverter with a symmetrical voltage transfer curve has a restriction that $W_p/W_n = 4.6$. $V_{DD} = 1.2 \text{ V}, \mu_n = 1530 \text{ cm}^2/\text{V} \cdot \text{s}, \mu_p = 540 \text{ cm}^2/\text{V} \cdot \text{s}, \text{ and } V_{tp} = -0.4$. What must V_{tn} be set to satisfy this condition?
- **5-8.** A CMOS inverter has transistor parameters: $K_n(W/L)_n = 100 \ \mu A/V^2, \ K_p(W/L)_p = 300 \ \mu A/V^2, \ V_{in} = 0.7 \ V, \ V_{ip} = -0.75 \ V, \text{ and} V_{DD} = 2.5 \ V.$ What fraction of the total output voltage swing will the *n*MOS transistor be in saturation?
- **5-9.** A CMOS inverter has its *n*MOS transistor in nonsaturation and its *p*MOS transistor in saturation. Given $K_n = 50 \ \mu A/V^2$, $K_p =$ $25 \ \mu A/V^2$, $V_{ln} = 0.5 \ V$, $V_{lp} = -0.6 \ V$, $(W/L)_n = 2$, $(W/L)_p = 4$, $I_{DD} = 11 \ \mu A$, and $V_{DD} = 2 \ V$, calculate the inverter output voltage V_Q .

Inverter Static Current Characteristics

- **5-10.** Given an inverter with $V_{DD} = 1.5$ V, $V_{tn} = 0.4$ V, and $V_{tp} = -0.4$ V, calculate the peak current during the transition if $(W/L)_n = 3$, $(W/L)_p = 7.5$, $K_p = 50 \,\mu\text{A/V}^2$, and $K_n = 125 \,\mu\text{A/V}^2$.
- **5-11.** An inverter has $V_{DD} = 2$ V, $V_{tn} = 0.5$ V, $V_{tp} = -0.5$ V, $K_n = 300 \ \mu \text{A/V}^2$, $K_p = 200 \ \mu \text{A/V}^2$, $(W/L)_n = 2$, and $(W/L)_p = 3$. (a) If $V_{IN} = 0.8$ V, what is I_{DD} ?
 - (b) The I_{DD} solution in part (a) appears twice in the current transfer curve. Use the *p*MOS equations to calculate the other V_{IN} value to satisfy the current in part (a).

5-12. Given $V_{DD} = 1.5$ V, $K_p = 70 \ \mu$ A. $K_n = 120 \ \mu$ A, $(W/L)_p = 150$, and $(W/L)_n = 75$, use the ITC to calculate V_{tp} .

5-13. Given that $V_{DD} = 1.8$ V, $V_m = 0.5$ V, and $K_n = 100 \ \mu \text{A/V}^2$, what is W/L of the *n*MOS transistor?

