ECE321 – Electronics I

Lecture 12: CMOS Inverter: Noise Margin & Delay Model

Payman Zarkesh-Ha

Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: <u>pzarkesh.unm.edu</u>

ECE321 - Lecture 12

University of New Mexico

Review of Last Lecture

CMOS Inverter

□ Voltage Transfer Characteristics (VTC)

- Switching threshold voltage
- Output high voltage
- Output low voltage
- Input high voltage
- Input low voltage

□ Current Transfer Characteristics (ITC)

• Peak current

Today's Lecture

- □ Noise Margin Definition
- □ Approximation of Noise Margin for CMOS Inverter
- □ Propagation Delay
- □ Rise and Fall Times
- □ Input and Self Loading (Load) Capacitances
- Delay Approximation

Review: Voltage Transfer Characteristics

Important Parameters on VTC:

- **D** Switching Threshold Voltage V_S or V_M
- **Gain at V**_s or V_M
- Output High Voltage V_{OH}
- Output Low Voltage V_{OL}
- Input High Voltage V_{IH}
- ❑ Input Low Voltage V_{IL}

Effect of Noise on a CMOS Inverter

Noise Margin

□ Noise Margin

$$NM_{H} = V_{OH} - V_{IH}$$

 $NM_{L} = V_{IL} - V_{OL}$

It is better to have:

- $V_{OH} = V_{DD}$
- $V_{OL} = V_{SS}$
- Large NM_H
- Large NM_L

Noise Margin in Inverter and Buffer

VTC of an inverter

VTC of a buffer

Example: Noise Margin Calculation

An IC with $V_{DD} = 1.5$ V shows $V_{OH} = 1.35$ V, $V_{OL} = 0.2$ V, $V_{IH} = 1.2$ V, and $V_{IL} = 0.3$ V. Calculate the NM_L and NM_H for this IC.

Sketch the NM rectangles

 $NM_H = 1.35 - 1.2 = 150 \text{ mV}$

 $NM_L = 0.3 - 0.2 = 100 \text{ mV}$

Noise Margin Approximation

V

□ How to compute Noise Margin

- Usually it is harder to compute the exact value of NM
- Use approximation (gain factor)
- Determine gain at V_{M}
- Extrapolate V_{IL} and V_{IH}
- V_{OL} and V_{OH} are easy to compute

Example:

• NM_L and NM_H in CMOS inverter

$$V_{IH} - V_{IL} = -\frac{(V_{OH} - V_{OL})}{g} = \frac{-V_{DD}}{g}$$
$$V_{IH} = V_M - \frac{V_M}{g} \qquad V_{IL} = V_M + \frac{V_{DD} - V_M}{g}$$
$$NM_H = V_{DD} - V_{IH} \qquad NM_L = V_{IL}$$

• where

$$\boldsymbol{g} = \frac{-2}{\lambda_n + |\lambda_p|} \left(\frac{1}{\boldsymbol{V}_M - \boldsymbol{V}_{Tn}} + \frac{1}{\boldsymbol{V}_{DD} - \boldsymbol{V}_M - |\boldsymbol{V}_{Tp}|} \right)$$

$$V_{OH}$$

ECE321 - Lecture 12

Example: Noise Margin Approximation

□ A CMOS inverter has V_{DD} =5V is designed to have V_M =2.9V. If V_{Tn} =0.7, V_{Tp} =-0.5, λ_n =0.05 V⁻¹ and λ_p =-0.08 V⁻¹. Find the noise margins NMH and NML.

Dynamic Behavior of CMOS Inverter

- Changing of the input doesn't instantaneously change the out pf an inverter
- □ This is mostly due to the time it takes to chrgae or dischage the output/load capacitor
- It is important to know how long it takes to get the signal out of the inverter or any CMOS logic gate

ECE321 - Lecture 12

University of New Mexico

Definition: Propagation Delay

Definition of propagation delay

- is delay from where input crosses 50%Vdd to where output crosses 50%Vdd
- Remember: the value of 50%Vdd is from switching threshold voltage (V_M)
- t_{pHL} is propagation delay when <u>output</u> switches from "High to Low"
- t_{pLH} is propagation delay when <u>output</u> switches from "Low to High"
- To compute delay, the inverter must be simplified

ECE321 - Lecture 12

University of New Mexico

Definition: 10%-90% Rise/Fall Times

- Definition of 10%-90% rise time
 - is delay from 10%Vdd to 90%Vdd in the output
 - t_r is the rise time when *output* switches from "Low to High"
- **Definition of 90%-10% fall time**
 - is delay from 90%Vdd to 10%Vdd in the output
 - t_f is the fall time when *output* switches from "High to Low"

Definition: Linear Rise/Fall Times

□ Definition of rise time (Hawkin's book)

- is delay from 0 to Vdd in the output assuming a constant current source model
- t_r is the rise time when *output* switches from "Low to High"
- □ Definition of fall time (Hawkin's book)
 - is delay from Vdd to 0 in the output assuming a constant current source model
 - t_f is the fall time when *output* switches from "High to Low"

Delay Calculation in CMOS Inveretr

- It is not easy to accurately calculate delay in CMOS inverter, because
 - CMOS inverter is a non-linear circuit, therefore exact delay calculation requires solving a non-linear differential equation
 - Most of the elements in the circuit is voltage dependent (transistor drive current, parasitic capacitances, channel length modulation, etc.)
- A simplified model is required for basic calculations and design process
- Note that SPICE actually does solve the non-linear circuit accurately, but is only good for final verification, not the design

Gate Input/Output Capacitances Components

Propagation Delay Model

- □ Propagation delay is defined as the time between the input reaching $V_{DD}/2$ and the output reaching $V_{DD}/2$
- \Box To simplify the model, let's assume I is a constant I_{av}

University of New Mexico

Propagation Delay Model

How to compute I_{av} **?**

- Assume step input
- NMOS goes into cutoff and stays there
- PMOS goes into saturation at first because $|V_{DS}| > |V_{GS}| |V_T|$
- PMOS will transition to linear, however, before V_{out} reaches $V_{DD}/2$

Propagation Delay Model

A simpler model for I_{av} can be obtained by assuming that the PMOS stays in saturation the whole time, therefore acts as an ideal current source

$$\boldsymbol{I}_{av} = \left(\frac{\boldsymbol{K}_{p}'}{2}\right) \left(\frac{\boldsymbol{W}_{p}}{\boldsymbol{L}_{p}}\right) \left(\boldsymbol{V}_{DD} - \left|\boldsymbol{V}_{tp}\right|\right)^{2}$$

$$t_{pLH} = t_2 - t_1 = \frac{C_L \cdot (V_{DD}/2)}{I_{av}} \implies t_{pLH} = \frac{C_L \cdot V_{DD}}{K'_p \left(\frac{W_p}{L_p}\right) (V_{DD} - |V_{Tp}|)^2}$$

 $\Box \text{ Assuming } V_{DD} >> V_{Tp}$

$$t_{pLH} = \frac{C_L}{K'_p \left(\frac{W_p}{L_p}\right) V_{DD}}$$

Minimum Delay Design Techniques

- Reduce C_{in} and C_{out} Careful layout, keep drain diffusion area as small as possible
- Reduce wiring capacitance Careful layout, keep devices as close as possible
- Increase (W/L) of devices Need to be careful not to get into self-loading effect
- Increase V_{DD} Need to be careful not to get into V_{DSAT} or velocity saturation

Example: CMOS Inverter Delay

A CMOS inverter has V_{DD}=5V is designed such that (W/L)_n=10 and (W/L)_p=20. Assume that V_{Tn}=0.7, V_{Tp}=-0.6, K'_n=100 uA/V², K'_p=-60 uA/V², and the load capacitance is 100fF.

1) Use I_{av} model to find t_{pHL} , t_{pLH} , $t_{r(10\%-90\%)}$, and $t_{f(90\%-10\%)}$.

2) Use constant current source model to find $t_{pHL},\,t_{pLH},\,t_{r(10\%-90\%)},\,t_{f(90\%-10\%)},\,t_r$, and t_f .

Answers:

1) t_{pHL} =29.64 ps, t_{pLH} =23.73 ps, $t_{r(10\%-90\%)}$ =56.71 ps, and $t_{f(90\%-10\%)}$ =70.98 ps 2) t_{pHL} =27.04 ps, t_{pLH} =21.52 ps, $t_{r(10\%-90\%)}$ =34.43 ps, and $t_{f(90\%-10\%)}$ =43.27 ps, t_r =43.04 ps and t_f =54.98 ps.