ECE321 – Electronics I

Lecture 15: CMOS Inverter: Leakage Power

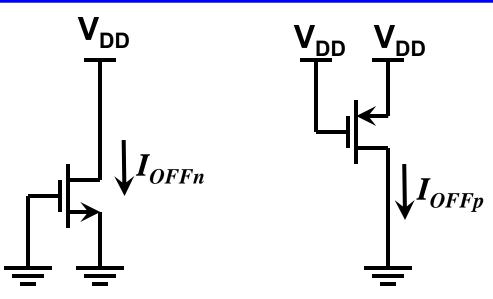
Payman Zarkesh-Ha

Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: <u>pzarkesh.unm.edu</u>

ECE321 - Lecture 15

University of New Mexico

Slide: 1

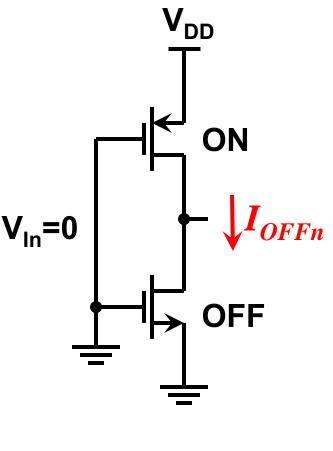

Review of Last Lecture

- □ Short Circuit Power Analysis
- □ Short Circuit Power Reduction Techniques

Today's Lecture

□ Leakage Current and Power

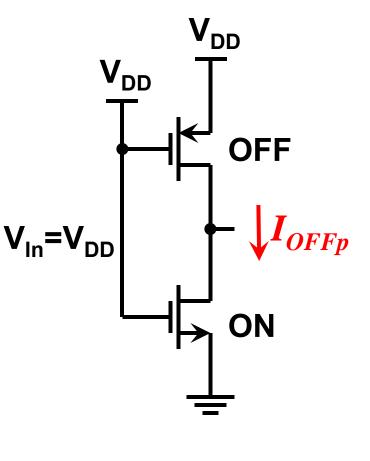
Leakage in MOSFETs



- □ MOSFET consists of two diodes connected back to back, one in forward and the other one in reverse bias.
- ❑ When the transistors is off, V_{GS}<V_T, the reverse biased diode will draw current, which is called "leakage current" or "off current".
- I_{OFF} is heavily dependent on threshold voltage. Higher threshold voltage results in lower leakage, but lower performance too.

ECE321 - Lecture 15

Leakage in CMOS Inverter (V_{in}=0)


- When the input of a CMOS inverter is at 0, PMOS is ON and can deliver any current.
- NMOS is OFF and will draw I_{OFFn} leakage from the power supply.
- The leakage power consumption in this case is equal to I_{DC}·V_{DD}

 $I_{DC} = I_{OFFn}$

Leakage in CMOS Inverter (V_{in}=V_{DD})

- When the input of a CMOS inverter is at V_{DD}, NMOS is ON and can deliver any current.
- PMOS is OFF and will draw I_{OFFp} leakage from the power supply.
- The leakage power consumption in this case is equal to I_{DC}·V_{DD}

I_{DC}=I_{OFFp}

Leakage Power in CMOS Inverter

- □ The amount of leakage power in a CMOS inverter is input dependent.
- Assuming that the probability of input being 0 and VDD is 50% each, then the average leakage power will be:

$$\mathbf{P}_{\text{leak}} = \mathbf{I}_{\text{DC,av}} \cdot \mathbf{V}_{\text{DD}} = (\mathbf{0.5}^* \mathbf{I}_{\text{OFFn}} + \mathbf{0.5}^* \mathbf{I}_{\text{OFFp}}) \cdot \mathbf{V}_{\text{DD}}$$

Sometimes, IOFF of a MOS transistor is normalized to the width of the transistor, W. In this case you need to multiply it by the width to get the actual current.

Example: Leakage Power in an Inverter

□ Compute the average leakage power in a CMOS inverter, where (W/L)_n=10, (W/L)_p=15, I_{OFFn}=27nA/µm, and I_{OFFp}=32nA/µm. The inverter uses 1.2V supply voltage and is implemented in 65nm technology node.

$$\mathbf{P}_{\text{leak}} = \mathbf{I}_{\text{DC,av}} \cdot \mathbf{V}_{\text{DD}} = (\mathbf{0.5*I}_{\text{OFFn}} + \mathbf{0.5*I}_{\text{OFFp}}) \cdot \mathbf{V}_{\text{DD}}$$

 $\mathsf{P}_{\mathsf{leak}} = (0.5^*27 \mathrm{x} 10^{-9} \mathrm{x} (10^*65 \mathrm{x} 10^{-3}) \mathrm{+} 0.5^*32 \mathrm{x} 10^{-9} \mathrm{x} (15^*65 \mathrm{x} 10^{-3})) \mathrm{x} 1.2$

P_{leak} = 29.25 nW

□ If we have a design with effectively 200 million inverter, how much the total leakage power will be.

Minimum Leakage Power Design Techniques

- □ Prime choice: Threshold Voltage increase, or I_{OFF} reduction
 - This will impact the performance too (Check delay equation)
- Power supply reduction
- □ Smaller transistors (will increase delay)
- □ Higher V_t (will increase delay)