ECE321 – Electronics I

Lecture 26: Timing Analysis

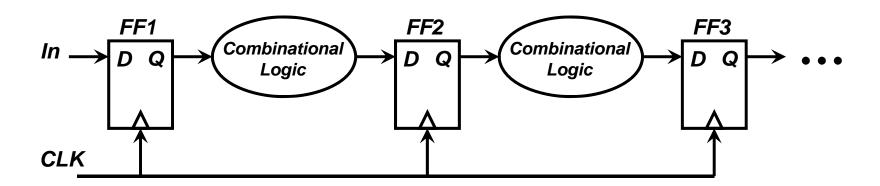
Payman Zarkesh-Ha

Office: ECE Bldg. 230B

Office hours: Tuesday 2:00-3:00PM or by appointment

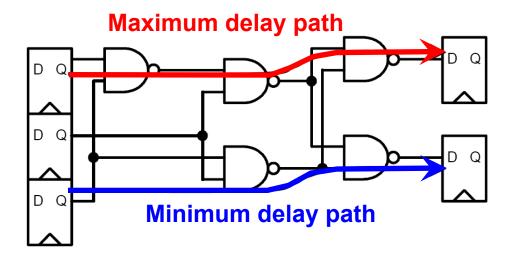
E-mail: <u>pzarkesh.unm.edu</u>

Review of Last Lecture

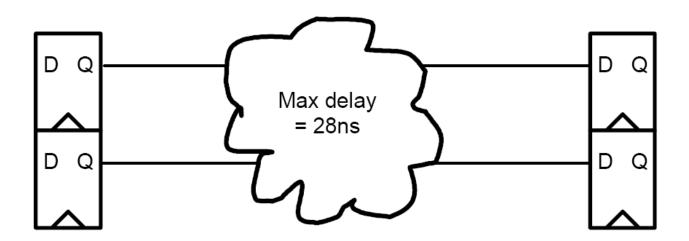

- □ Sequential Logic
 - Latches and Flip-Flops
 - Timing Characteristics
 - Design of Latches and Flip-Flops
 - Setup and Hold Time Issues

Today's Lecture

- ☐ Timing Issues
 - Critical Path
 - Timing Constraints


Pipelined Data path Circuit

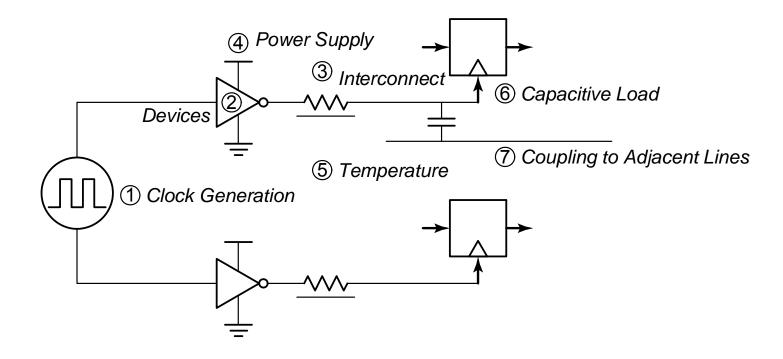
- ☐ Flip flops synchronize data at each pipe stage start and finish
- □ Logic between them is combinational
- Since each stage begins and ends on a clock edge we can divide and conquer to determine the system timing
- ☐ This is called "timing analysis"


Timing Analysis

- Measure each path through the logic between FF's
- □ We really only care about the longest path, called maximum delay for setup
- ☐ Similarly, we only care about the shortest path, called minimum delay (or contamination delay) for hold
- ☐ The path that gives the maximum delay on the whole chip is called "critical path"

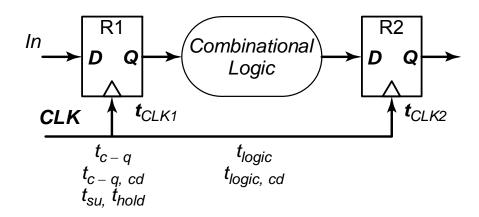
Minimum Clock Period

- Don't forget to consider delay of flip flops (setup, C2Q, and hold time) in maximum delay computation
- □ Example: Assuming that the setup time is 1ns, hold time is 1ns, and C2Q delay is 2ns, what is the minimum clock period? Why?


Clock Uncertainty

□ Clock skew

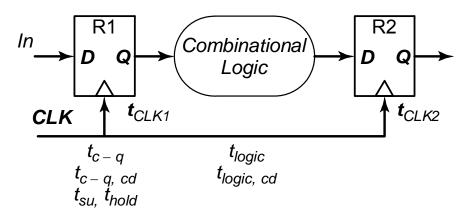
 Spatial variation in temporally equivalent clock edges; includes: deterministic + random


□ Clock jitter

• Temporal variations in consecutive edges of the clock signal; includes: modulation + random noise

Clock Skew and Setup Time Constraint

- \square Worst case is when receiving edge arrives early (positive δ)
- Maximum delay is impacted since a clock cycle can be shorter than ideal
 - Simply subtract the expected clock skew and jitter from the cycle time when designing
 - A failure here is not too bad: It means that you missed a setup time
 - The part is then "slow"—It will still work at a reduced clock rate

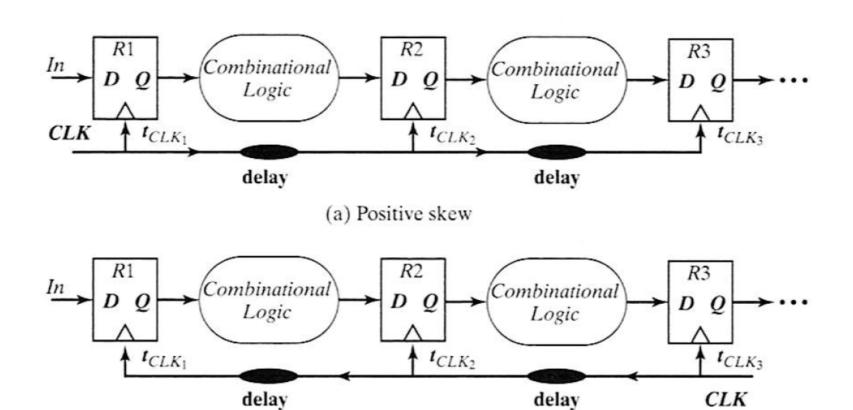

Minimum cycle time:

$$T - \delta = t_{c-q} + t_{su} + t_{logic}$$

$$\delta = t_{CLK1} - t_{CLK2}$$

Clock Skew and Hold Time Constraint

- \square Worst case is when receiving edge arrives late, (positive δ)
- ☐ Minimum delay is impacted since a receiving clock edge can be later than ideal
 - Means that the hold time at the receiving latch is more easily violated
 - A failure here is pretty much catastrophic
 - Since skew is built-in, there is nothing you can do post-silicon to fix it!
 - It is generally worth-while to add more design guard-band (margin) to your min-delay timing!



Hold time constraint:

$$t_{(c-q, cd)} + t_{(logic, cd)} > t_{hold} + \delta$$

$$\delta = t_{CLK2} - t_{CLK1}$$

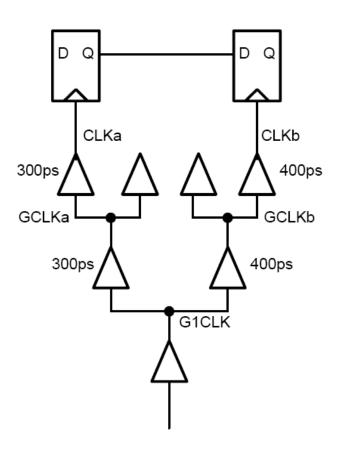
Positive and Negative Skew

(b) Negative skew

ECE321 - Lecture 26

Example: Timing Constraints

How fast can the circuit in Fig. 8-23 be clocked if $t_{su} = 2$ ns, $t_{hold} = 3$ ns, $t_{logic} = 15$ ns, $t_{logic-cd} = 11$ ns, and $t_{cq} = 4$ ns.



$$T>\,t_{cq}\,+\,t_{{\rm log}\,ic}\,+\,t_{su}\,\,=\,\,(4+15+2)\,ns=21\,ns$$

$$F_{MAX} = \frac{1}{T} = \frac{1}{21ns} = 47.62 \ MHz$$

Another Example: Effect of Clock Skew

- □ Assume t_{C2Q} = 350ps and T_{hold} = 100ps. What happens?
- □ Assume t_{C2Q} = 150ps and T_{hold} = 100ps. What happens?

