ECE321 – Electronics I

Lecture 3: Basic Solid State Physics

Payman Zarkesh-Ha

Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: <u>pzarkesh.unm.edu</u>

ECE321 - Lecture 3

University of New Mexico

Review of Last Lecture

- □ Circuits with Nonlinear Devices (Diode)
- **Diode Basic Characteristics**
- **Diode Approximations**
- **Diode Application Circuits (Rectifiers)**

Today's Lecture

- **Electrical Property of Materials**
- **Energy Band Diagrams**
- □ Semiconductor Materials
- □ n-Type and p-Type Semiconductor Materials
- □ Mass Action Law

Electrical Property of Materials

- Conductor: Low resistance material, like metals, that conducts electricity
- Insulator: High resistance material, i.e. almost no current under applied voltage
- Semiconductors: act as conductor or insulator (the basis for diodes and transistors)

Conductivity from Atomic Perspective

Energy Level and Energy Band Diagram

- The energy band shows the possible energy levels that an electron can obtain.
- □ The electrical property of the material depends on the energy gap (how tightly an electron is tied to the atom)

University of New Mexico

Electrical property using Band Diagram

Electron-Hole Pair Creation in Semiconductors

Density of electrons in intrinsic materials:

$$n_i = BT^{\frac{3}{2}} e^{\frac{-Eg}{2(kT/q)}}$$

 $K = 1.381 \times 10^{-23} \text{ J/K}$ q = 1.602 x 10⁻¹⁹ C B = Constant (5.23x 10¹⁵ K^{-3/2}cm⁻³ for Si) Eg = Band Gap (1.12 ev for Si)

Example: In Silicon n_i at room temperature is 1.062 x 10¹⁰ electrons/cm³

Question: What is the density of holes in this case?

Extrinsic Semiconductors: n-Type

Mass Action Law

If n_0 is the electron density and p_0 is the hole density in an extrinsic semiconductor then under thermal equilibrium we have:

$$n_o p_o = n_i^2$$

Let N_D be the density of donor atoms in an n-type semiconductor. At room temperature almost all of the donor atoms are ionized i.e. $n_0 = N_D$

Therefore:

$$n_o p_o = n_i^2 = N_D p_o \implies p_o = \frac{n_i^2}{N_D}$$

Example: n-Type Semiconductor

If $N_D = 10^{16}$ (donor atoms/cm³), calculate the minority concentration at T = 300 K.

Solution

 $n_o \approx N_D = 10^{16} \text{ (electrons/cm}^3)$ and

$$p_o = \frac{(1.062 \times 10^{10})^2}{10^{16}} = 1.128 \times 10^4 \,(\frac{\text{holes}}{\text{cm}^3})$$

n-Type semiconductor: Very large density of

electrons but very small density of holes

Electrons : Majority Carrier Holes : Minority Carrier

Extrinsic Semiconductors: p-Type

Let N_A be the density of acceptor atoms in an p-type semiconductor. At room temperature almost all of the acceptor atoms are ionized i.e. $p_0 = N_A$

Therefore:

$$n_o p_o = n_i^2 = n_0 N_A \qquad \Longrightarrow \qquad n_0 = \frac{n_i^2}{N_A}$$

Example: p-Type Semiconductor

If $N_A = 5 \times 10^{17}$ (acceptor atoms/cm³) calculate the minority carrier concentration at T = 300 K.

Answer:

$$n_o = 226 \left(\frac{\text{electrons}}{\text{cm}^3} \right)$$

p-Type semiconductor: Very large density of holes but very small density of electrons

Holes : Majority Carrier Electrons : Minority Carrier