ECE321 – Electronics I

Lecture 8: MOSFET Threshold Voltage and Parasitic Capacitances

Payman Zarkesh-Ha

Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: <u>pzarkesh.unm.edu</u>

ECE321 - Lecture 8

University of New Mexico

Review of Last Lecture

- **Device Model for Linear Region**
- **Device Model for Saturation Region**
- **Channel Length Modulation**

Today's Lecture

- □ Threshold Voltage Equation
- □ "Dynamic Parameters of Long Channel MOSFET"
- □ MOSFET Parasitic Capacitances
 - Overlap capacitances
 - Channel capacitances
 - Junction capacitances

Threshold Voltage Equation

- MOSFET is a four terminal device; Gate, Source, Drain, and Bulk.
- □ The Bulk may not be always connected to the Source.

Threshold Voltage Equation

- □ We normally assume that the bulk of the MOSFET is connected to source. However, sometimes the bulk and source are in different potentials ($V_{SB} \neq 0$). V_{SB} is called "body bias".
- **The applied V**_{SB} changes the threshold voltage as shown below:

$$\boldsymbol{V}_{T} = \boldsymbol{V}_{T0} + \gamma \left(\sqrt{\left| \boldsymbol{2} \boldsymbol{\varphi}_{F} + \boldsymbol{V}_{SB} \right|} - \sqrt{\left| \boldsymbol{2} \boldsymbol{\varphi}_{F} \right|} \right)$$

□ In this equation, V_{T0} is the zero bias threshold voltage, γ is the body bias coefficient, and ϕ_F is:

$$\varphi_{F} = \frac{KT}{q} Ln \left(\frac{N_{A}}{n_{i}} \right)$$

Where N_A is the doping concentration in the substrate.

ECE321 - Lecture 8

Example: Threshold Voltage & Body Bias

 \Box Assume that V_{T0}=0.8V, γ =0.6 V^{1/2} , ϕ_{F} = 0.4 V. Find V_T if V_{SB}= 2.5 V

$$\boldsymbol{V}_{T} = \boldsymbol{V}_{T0} + \gamma \left(\sqrt{\left| \boldsymbol{2} \boldsymbol{\varphi}_{F} + \boldsymbol{V}_{SB} \right|} - \sqrt{\left| \boldsymbol{2} \boldsymbol{\varphi}_{F} \right|} \right)$$

$$V_{\tau} = 0.8 + 0.6 \times \left(\sqrt{|2 \times 0.4 + 2.5|} - \sqrt{|2 \times 0.4|} \right) = 0.8 + 0.55 = 1.35$$

Observations:

- 1) Body bias is normally reverse bias. (why?)
- 2) More reverse body bias increases the threshold voltage.

MOSFET Threshold Voltage

- The gate potential at which the channel inverts is called the threshold voltage (V_T)
- V_T is always referenced in relation to the gate to source potential V_{GS} (this is because the surface potential needs to exceed the source to "lure" electrons away into the channel)
- V_T is comprised of four main components:
 - Work function difference between the gate and substrate $\phi_F(substrate) \phi_F(gate)$
 - V_{GS} component required to change the surface potential of $2\phi_F$
 - V_{GS} needed to offset the depletion region charge
 - V_{GS} needed to offset charges trapped in the gate oxide

More Detail on MOSFET Threshold Voltage

Zero body bias threshold voltage:

$$V_{T0} = \varphi_{ms} + 2\varphi_F + \frac{\sqrt{2qN_A\varepsilon_{si}}|2\varphi_F|}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

Where:
$$\varphi_F = \frac{KT}{q} Ln \left(\frac{N_A}{n_i} \right)$$
 and $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$

Threshold voltage with body bias:

$$V_{T} = V_{T0} + \gamma \left(\sqrt{\left| 2\varphi_{F} + V_{SB} \right|} - \sqrt{\left| 2\varphi_{F} \right|} \right)$$

Where:
$$\gamma = \frac{\sqrt{2} Q V_A c_{si}}{C_{ox}}$$

Important Facts:

- Body bias increases threshold voltage
- Threshold voltage is **positive** for normal **NMOS**
- Threshold voltage is negative for normal PMOS

MOS Capacitance

- Delay of digital CMOS circuits depends of capacitance of MOS device
- □ There is a trade off between parasitic capacitance and drive strength of MOS device
 - Larger C_{ox} increases the drive strength (I_{DS} equation)
 - However, larger C_{ox} increases the device parasitic capacitance
- □ MOS parasitic capacitance includes
 - Overlap capacitances
 - Channel capacitances
 - Junction capacitances
- Between almost every two terminals of MOS device, there is a source of parasitic capacitance

MOS Parasitic Capacitances

Overlap Capacitances

- Because of the lateral S/D diffusion, there is an overlap between gate and S/D junctions
- This overlap capacitance is a constant linear capacitance

$$\boldsymbol{C}_{GSOV} = \boldsymbol{C}_{GDOV} = \boldsymbol{W} \boldsymbol{C}_{ox} \boldsymbol{X}_{d}$$

Channel Capacitances

Channel capacitance is a voltage dependent and non-linear capacitance

Cutoff Region

Linear Region

Saturation Region

Operation Region	С _{двсн}	C _{GSCH}	С _{GDCH}
Cutoff	C _{ox} WL _{eff}	0	0
Linear	0	$\frac{1}{2}C_{ox}WL_{eff}$	$\frac{1}{2}C_{ox}WL_{eff}$
Saturation	0	$\frac{2}{3}C_{ox}WL_{eff}$	0

ECE321 - Lecture 8

Junction Capacitances

- □ Junction capacitance is the *depletion region* capacitance of S/D
- It is a <u>voltage dependent</u> capacitance (remember reverse biased diode)

ECE321 - Lecture 8

University of New Mexico

Junction Capacitance Components

- □ The Junction capacitance of bottom plate is treated separately from the three non-gate edges
- □ The gate edge is often ignored since it is part of the conducting channel
- □ The bottom plate is usually step graded with m=0.5
- □ The sidewall are step graded with m=0.33 and face the <u>channel-stop implant</u> which has much higher doping than substrate

Junction Capacitance Components

MOS Parasitic Capacitances

$$C_{GS} = C_{GSCH} + C_{GSOV}$$
$$C_{GD} = C_{GDCH} + C_{GDOV}$$
$$C_{GB} = C_{GBCH}$$
$$C_{SB} = C_{Sdiff}$$
$$C_{DB} = C_{Ddiff}$$