

University of New Mexico
Department of Electrical and Computer Engineering

ECE 523/421 – Analog Electronics (Fall 2010)

Exam 1

Name: **Answers**

Date: Oct. 4, 2010

Note: Only calculator, pencils, and pens are allowed.

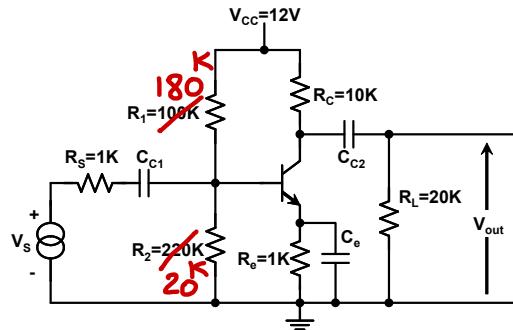
1. (10 points) True or false:

- (a) In a properly biased BJT, the input resistance looking at the emitter terminal has the lowest resistance. (**T**)
- (b) The voltage gain of a source-follower amplifier is slightly larger than 1. (**F**)
- (c) The source-degradation resistor improves the stability of the transistor's bias point. (**T**)
- (d) A BJT with $\beta \approx \infty$ is exactly equivalent to a MOSFET. (**F**)
- (e) The absolute maximum gain (intrinsic gain) of a BJT at room temperature can be expressed as $V_A/25\text{mV}$. (**T**)

2. (10 points) A PMOS is biased at $100\mu\text{A}$. Calculate V_{OV} , g_m , and r_o . Assume that $K_p' = 50 \mu\text{A}/\text{V}^2$, $(W/L)=10$, and $V_A=-5\text{V}$.

$$V_{OV} = 0.632 \text{ V}$$

$$g_m = 0.316 \text{ mA/V}$$

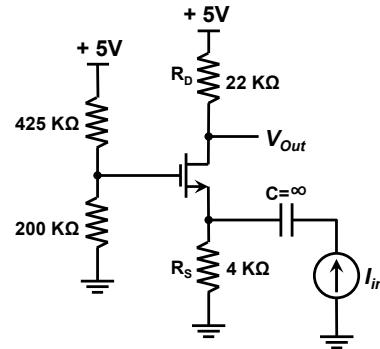

$$r_o = 50 \text{ k}\Omega$$

3. (20 points) Consider the common emitter amplifier shown in the circuit below:

- Compute the transistor operating point (V_{CE} and I_C). Assume that $\beta=100$ for the transistor.
- Compute the voltage gain of the amplifier (V_{out}/V_S). Assume that C_{C1} , C_{C2} , and C_e are very large.

a) $I_C = 0.42 \text{ mA}$

$V_{CE} = 7.38 \text{ V}$


b) $\frac{V_{out}}{V_s} = -91.5$

4. (30 points) The following circuit is a transimpedance amplifier, where the input current is amplified into the output voltage. Assume that $K_n = 100 \mu A/V^2$, $V_T = 1V$, and $(W/L) = 50$. Ignore the channel length modulate effect.

(a) Find V_G , V_S , V_D , V_{OV} , I_D , and g_m at the bias point.
 (b) Determine the transimpedence gain V_{out}/i_{in} . (Hint: Use either the T model or the same technique that you learned in the class to directly find the gain)
 (c) Compute $V_{out}(\max)$ and $V_{out}(\min)$ and the total swing. Is the V_D found in part (a) in the middle of the output swing?

a) $V_G = 1.6 V$
 $V_S = 0.4 V$
 $V_D = 2.8 V$
 $V_{OV} = 0.2 V$
 $I_D = 0.1 mA$
 $g_m = 1 mA/V$

b) $V_o/i_{in} = 17.6 k\Omega$

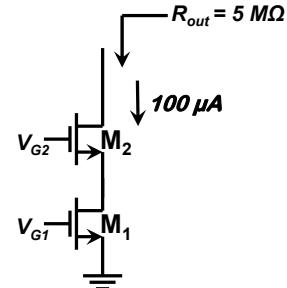
c) $V_{o\max} = 5 V$
 $V_{o\min} = 0.6 V$
 $Swing = 4.4 V$

yes.

5. (30 points) We would like to design the following CMOS Cascode circuit to implement a $100 \mu\text{A}$ current source with the output resistance of $5 \text{ M}\Omega$. Assume that $K'_n = 100 \mu\text{A}/\text{V}^2$, $V_A = 5\text{V}$, and $V_T = 1\text{V}$.

- Find r_o .
- From the output resistance equation in cascode and the result in part (a), determine the g_m that can give us the desired output resistance.
- From the result in part (b), find the overdrive voltage, V_{ov} .
- From the result in part (c), determine the transistor sizes $(W/L)_1$ and $(W/L)_2$.
- To get the maximum output swing, how do you determine the bias point for V_{G1} and V_{G2} ?
- What is the minimum output voltage that the current source can still work properly?

a) $r_o = 50 \text{ k}\Omega$


b) $g_m = 2 \text{ mA/V}$

c) $V_{ov} = 0.1 \text{ V}$

d) $(\frac{W}{L})_{1,2} = 200$

e) $V_{G1} = 1.1 \text{ V}$, $V_{G2} = 1.2 \text{ V}$

f) $V_{omin} = 0.2 \text{ V}$

