ECE 523/421 - Analog Electronics: University of New Mexico

Solutions Homework 1

Problem 5.4

An NMOS transistor that is operated with a small v_{DS} is found to exhibit a resistance r_{DS} . By what factor will r_{DS} change in each of the following situations?

Using the formula for the drain current for a small v_{DS} .

$$i_D = \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) (v_{OV}) \right] v_{DS}$$

We can obtain $r_{DS} = \frac{v_{DS}}{i_D}$

$$r_{DS} = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L}\right) (v_{OV})}$$

a) v_{ov} is doubled.

$$r_{DS}' = \frac{1}{(\mu_n C_{ox}) \left(\frac{W}{L}\right) (2v_{OV})}$$
$$r_{DS}' = \frac{r_{DS}}{2}$$

The resistance is reduced by half when v_{OV} is doubled.

b) The device is replaced with another fabricated in the same technology but with double the width.

$$r_{DS}' = \frac{1}{(\mu_n C_{ox}) \left(\frac{2W}{L}\right) (v_{OV})}$$
$$r_{DS}' = \frac{r_{DS}}{2}$$

The resistance is reduced by half when the width W is doubled.

c) The device is replaced with another fabricated in the same technology but with both the width and length doubled.

$$r_{DS}' = \frac{1}{(\mu_n C_{ox}) \left(\frac{2W}{2L}\right) (v_{OV})}$$
$$r_{DS}' = r_{DS}$$

The resistance remains the same when the width W the length L are doubled.

d) The device is replaced with another fabricated in a more advanced technology for which the oxide thickness is halved and similarly for W and L (assume μ_n remains unchanged).

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$r_{DS'} = \frac{1}{\left(\mu_n \frac{\varepsilon_{ox}}{\frac{t_{ox}}{2}}\right) \left(\frac{\frac{W}{2}}{\frac{L}{2}}\right) (v_{oV})}$$

$$r_{DS'} = \frac{r_{DS}}{2}$$

The resistance is reduced by half when the oxide thickness t_{ox} , width W and length L are halved.

An n-channel MOS device in a technology for which oxide thickness is 4 nm, minimum channel length is 0.18 µm, $K_n' = 400 \ \mu A/V^2$, and V_t =0.5 V operates in the triode region, with small v_{DS} and with the gate-source voltage in the range 0V to +1.8V. What device width is needed to ensure that the minimum available resistance is 1 k Ω ?

Using the formula for the drain current for a small v_{DS} .

$$i_D = \left[(\mu_n C_{ox}) \left(\frac{W}{L} \right) (v_{OV}) \right] v_{DS}$$

We can obtain $r_{DS} = \frac{v_{DS}}{i_D}$

$$r_{DS} = \frac{1}{(k_n') \left(\frac{W}{L}\right) (v_{GS} - V_t)}$$

Substituting the values into the equation (check the units).

$$1000\Omega = \frac{1}{(400x10^{-6})\left(\frac{W}{0.18x10^{-6}}\right)(1.8 - 0.5)}$$

Solving for W

$$W = \frac{1}{(400x10^{-6}) \left(\frac{1000}{0.18x10^{-6}}\right) (1.8 - 0.5)}$$

$$W = 0.346 \,\mu m$$

For the circuit in Fig. P5.25, sketch iD versus vs for vs varying from 0 to VDD. Clearly label your sketch.

$$V_{GD} = 0 V$$

$$V_{GS} = V_{DD} - v_S$$

 $V_{GS} = V_{DD} - v_S$ For $V_{GD} < V_{th}$ the transistor is in saturation

The drain current iD is:

$$i_D = \frac{1}{2} k_n (v_{GS} - V_t)^2$$

Substituting $V_{GS} = V_{DD} - v_S$

$$i_D = \frac{1}{2} k_n (V_{DD} - v_S - V_t)^2$$

$$i_D = \frac{1}{2}k_n[(V_{DD} - V_t)^2 - 2v_S(V_{DD} - V_t) + v_S^2]$$

Figure P5.25

For $V_{GS} < V_{th}$ the transistor is in cut-off region

Substituting $V_{GS} = V_{DD} - v_S$

$$V_{DD} - v_S < V_t$$

$$v_S > V_{DD} - V_t$$

For $v_{\scriptscriptstyle S} > V_{\scriptscriptstyle DD} - V_t$ the drain current is zero, so we only need to plot in the region:

$$0 \le v_S \le V_{DD} - V_t$$

When $v_S=0$, i_D is:

$$i_D = \frac{1}{2}k_n[(V_{DD} - V_t)^2 - 2(0)(V_{DD} - V_t) + 0^2]$$
$$i_D = \frac{1}{2}k_n(V_{DD} - V_t)^2$$

Plot I_D vs. Vs

In a particular IC design in which the standard channel length is 1 μ m, an NMOS device with W/L of 10 operating at 200 μ A is found to have an output resistance of 100 k Ω , about $^1/_5$ of that needed. What dimensional change can be made to solve the problem? What is the new device length? The new device width? The new W/L ratio? What is V_A for the standard device in this IC? The new device?

Using the device parameter V_A

$$V_A = V_A'L$$

And r_o

$$r_o = \frac{V_A}{I_D'} = \frac{V_A'L}{I_D'}$$

To obtain the output resistance needed that is 500 k Ω (100x5) we need to increase the channel length L 5 times, so the new channel length will be 5 μ m.

Also to keep the operating current unchanged, the ratio $\left(\frac{W}{L}\right)$ has to be constant and therefore the with W will be 50 µm. With this value of W, we assure that the ratio is the same.

 V_A for the standard device is:

$$V_A = r_o I_D' = (100k\Omega)(200\mu A) = 20 V$$

 V_A for the new device is:

$$V_A = 5r_0 I_D' = (500k\Omega)(200\mu A) = 100 V$$

The NMOS transistor in the circuit of Fig. P5.44 has $V_t = 0.4$ V and $k_n = 4$ mA/V2. The voltages at the source and the drain are measured and found to be -0.6 V and +0.2 V, respectively. What current I_D is flowing, and what must the values of R_D and R_S be? What is the largest value for R_D for which I_D remains unchanged from the value found?

$$V_{G} = 0 V$$

$$V_{t} = 0.4 V$$

$$V_{s} = -0.6 V$$

$$V_{d} = 0.2 V$$

Reading the values from the circuit.

$$v_{DS} = 0.8 V$$

$$v_{GS} = 0.6 V$$

Checking that the transistor is operating in saturation mode.

$$v_{DS} > (v_{GS} - V_t)$$

$$0.8 > (0.6 - 0.4)$$

The NMOS is indeed in saturation mode.

The drain current for the NMOS in saturation mode is:

$$i_D = \frac{1}{2} k_n (v_{GS} - V_t)^2$$

$$i_D = \frac{1}{2} 4 \frac{mA}{V^2} (0.6 - 0.4)^2$$

$$i_D = 0.08 \, mA$$

Determining R_D

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

$$R_D = \frac{1 - 0.2}{0.08mA}$$

$$R_D = 10k\Omega$$

Determining $R_{\mathcal{S}}$

$$R_S = \frac{V_S - V_{SS}}{I_D}$$

$$R_S = \frac{-0.6 - (-1)}{0.08mA}$$

$$R_S = 5k\Omega$$

The transistor in the circuit of Fig. P5.47 has $k_n' = 0.4$ mA/V², V_t =0.4 V, and λ =0. Show that operation at the edge of saturation is obtained when the following condition is satisfied:

Figure P5.47

$$v_{DS} = (v_{GS} - V_t)$$

 $i_D = 1.62 \times 10^{-4} \left(\frac{W}{I}\right) A$

Since
$$v_S = 0$$

$$v_D - 0 = (1.3 - 0 - 0.4)$$

$$v_D = 0.9 V$$

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

$$R_D = \frac{1.3 - 0.9}{1.62 \times 10^{-4} \left(\frac{W}{L}\right)}$$

$$R_D \left(\frac{W}{L}\right) = \frac{1.3 - 0.9}{1.62 \times 10^{-4}}$$

$$R_D\left(\frac{W}{L}\right) = 2469 \ \Omega \ \cong 2.5k\Omega$$