Section 5.3: MOSFET Circuits at DC

Note: If λ is not specified, assume it is zero.

D 5.44 Design the circuit of Fig. P5.44 to establish a drain current of 0.1 mA and a drain voltage of +0.3 V. The MOSFET has $V_t = 0.5$ V, $\mu_n C_{ox} = 400 \, \mu\text{A/V}^2$, $L = 0.4 \, \mu\text{m}$, and $W = 5 \, \mu\text{m}$. Specify the required values for R_S and R_D .

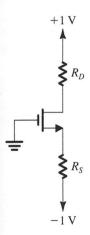


Figure P5.44

5.45 The NMOS transistor in the circuit of Fig. P5.44 has $V_t = 0.4 \text{ V}$ and $k_n = 4 \text{ mA/V}^2$. The voltages at the source and the drain are measured and found to be -0.6 V and +0.2 V, respectively. What current I_D is flowing, and what must the values of R_D and R_S be? What is the largest value for R_D for which I_D remains unchanged from the value found?

- **D** 5.46 For the circuit in Fig. E5.10, assume that Q_1 and Q_2 are matched except for having different widths, W_1 and W_2 . Let $V_t = 0.5 \text{ V}$, $k_n' = 0.4 \text{ mA/V}^2$, $L_1 = L_2 = 0.36 \text{ }\mu\text{m}$, $W_1 = 1.44 \text{ }\mu\text{m}$, and $\lambda = 0$.
- (a) Find the value of R required to establish a current of 50 μ A in Q_1 .
- (b) Find W_2 and R_2 so that Q_2 operates at the edge of saturation with a current of 0.5 mA.

5.47 The transistor in the circuit of Fig. P5.47 has $k'_n = 0.4 \text{ mA/V}^2$, $V_t = 0.4 \text{ V}$, and $\lambda = 0$. Show that operation at the

edge of saturation is obtained when the following condition is satisfied:

$$\left(\frac{W}{L}\right)R_D \simeq 2.5 \text{ k}\Omega$$

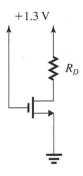


Figure P5.47

- **D** 5.48 It is required to operate the transistor in the circuit of Fig. P5.47 at the edge of saturation with $I_D = 0.1$ mA. If $V_c = 0.4$ V, find the required value of R_D .
- **D 5.49** The PMOS transistor in the circuit of Fig. P5.49 has $V_t = -0.5 \text{ V}$, $\mu_p C_{ox} = 100 \, \mu\text{A/V}^2$, $L = 0.18 \, \mu\text{m}$, and $\lambda = 0$. Find the values required for W and R in order to establish a drain current of $180 \, \mu\text{A}$ and a voltage V_D of $1 \, \text{V}$.

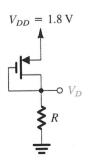


Figure P5.49

D 5.50 The NMOS transistors in the circuit of Fig. P5.50 have $V_t = 0.5 \text{ V}$, $\mu_n C_{ox} = 250 \text{ } \mu\text{A/V}^2$, $\lambda = 0$, and $L_1 = L_2 = 0.25 \text{ } \mu\text{m}$. Find the required values of gate width for each of Q_1

and Q_2 , and the value of R, to obtain the voltage and current values indicated.

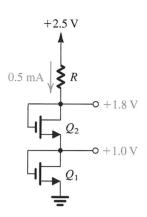


Figure P5.50

D 5.51 The NMOS transistors in the circuit of Fig. P5.51 have $V_t = 0.5 \text{ V}$, $\mu_n C_{ox} = 90 \text{ } \mu\text{A/V}^2$, $\lambda = 0$, and $L_1 = L_2 = L_3 = 0.5 \text{ } \mu\text{m}$. Find the required values of gate width for each of Q_1 , Q_2 , and Q_3 to obtain the voltage and current values indicated.

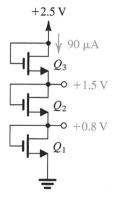


Figure P5.51

5.52 Consider the circuit of Fig. 5.24(a). In Example 5.5 it was found that when $V_r = 1 \text{ V}$ and $k_r'(W/L) = 1 \text{ mA/V}^2$.

the drain current is 0.5 mA and the drain voltage is +7 V. If the transistor is replaced with another having $V_i = 1.5$ V with $k'_n(W/L) = 1.5$ mA/V², find the new values of I_D and V_D . Comment on how tolerant (or intolerant) the circuit is to changes in device parameters.

D 5.53 Using a PMOS transistor with $V_t = -1.5 \text{ V}$, $k_p' = (W/L) = 4 \text{ mA/V}^2$, and $\lambda = 0$, design a circuit that resembles that in Fig. 5.24(a). Using a 10-V supply, design for a gate voltage of +6 V, a drain current of 0.5 mA, and a drain voltage of +5 V. Find the values of R_S and R_D . Also, find the values of the resistances in the voltage divider feeding the gate, assuming a 1- μ A current in the divider.

5.54 The MOSFET in Fig. P5.54 has $V_t = 0.4 \text{ V}$, $k_n' = 500 \,\mu\text{A/V}^2$, and $\lambda = 0$. Find the required values of *W/L* and of *R* so that when $v_I = V_{DD} = +1.3 \text{ V}$, $r_{DS} = 50 \,\Omega$ and $v_O = 50 \,\text{mV}$.

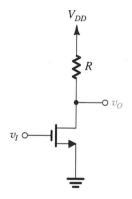


Figure P5.54

5.55 In the circuits shown in Fig. P5.55, transistors are characterized by $|V_t| = 1 \text{ V}$, $k'W/L = 4 \text{ mA/V}^2$, and $\lambda = 0$.

- (a) Find the labeled voltages V_1 through V_7 .
- (b) In each of the circuits, replace the current source with a resistor. Select the resistor value to yield a current as close to that of the current source as possible, while using resistors specified in the 1% table provided in Appendix J.

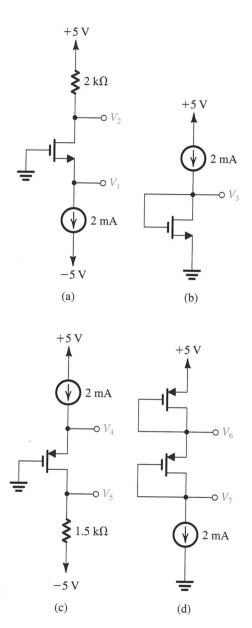
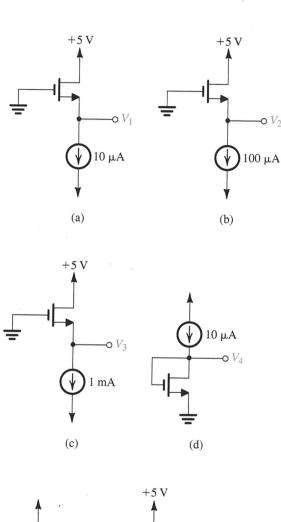



Figure P5.55

5.56 For each of the circuits in Fig. P5.56, find the labeled node voltages. For all transistors, $k_n'(W/L) = 0.5 \text{ mA/V}^2$, $V_i = 0.8 \text{ V}$, and $\lambda = 0$.

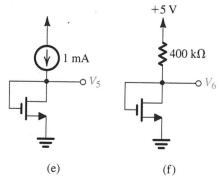


Figure P5.56 continued

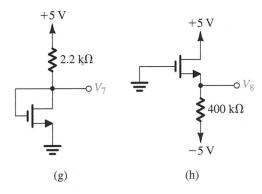


Figure P5.56 continued

5.57 For each of the circuits shown in Fig. P5.57, find the labeled node voltages. The NMOS transistors have $V_t = 0.9 \text{ V}$ and $k'_n(W/L) = 1.5 \text{ mA/V}^2$.

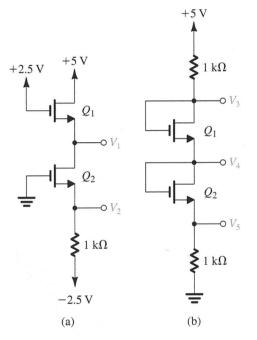


Figure P5.57

- *5.58 For the circuit in Fig. P5.58:
- (a) Show that for the PMOS transistor to operate in saturation, the following condition must be satisfied:

$$IR \leq |V_{to}|$$

(b) If the transistor is specified to have $|V_{tp}| = 1 \text{ V}$ and $k_p = 0.2 \text{ mA/V}^2$, and for I = 0.1 mA, find the voltages V_{SD} and V_{SG} for R = 0, $10 \text{ k}\Omega$, $30 \text{ k}\Omega$, and $100 \text{ k}\Omega$.

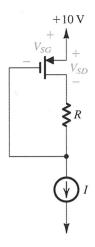


Figure P5.58

5.59 For the circuits in Fig. P5.59, $\mu_n C_{ox} = 3 \mu_p C_{ox} =$ 270 μ A/V², $|V_t| = 0.5$ V, $\lambda = 0$, L = 1 μ m, and W = 3 μ m, unless otherwise specified. Find the labeled currents and voltages.

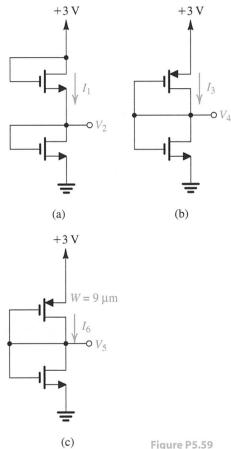


Figure P5.59

*5.60 For the devices in the circuit of Fig. P5.60, $|V_t|=1 \text{ V}, \ \lambda=0, \ \mu_n C_{ox}=50 \ \mu\text{A/V}^2, \ L=1 \ \mu\text{m}, \ \text{and} \ W=10 \ \mu\text{m}.$ Find V_2 and I_2 . How do these values change if Q_3 and Q_4 are made to have $W=100 \ \mu\text{m}$?

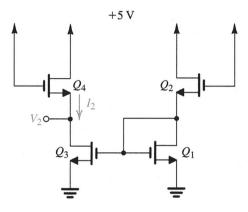


Figure P5.60

5.61 In the circuit of Fig. P5.61, transistors Q_1 and Q_2 have $V_t = 0.7$ V, and the process transconductance parameter $k_n' = 125 \,\mu\text{A/V}^2$. Find V_1 , V_2 , and V_3 for each of the following cases:

(a)
$$(W/L)_1 = (W/L)_2 = 20$$

(b)
$$(W/L)_1 = 1.5(W/L)_2 = 20$$

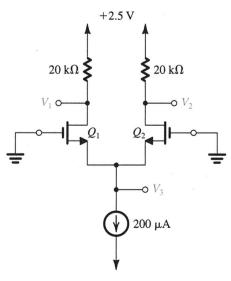


Figure P5.61

Section 5.4: The Body Effect and Other Topics

5.62 In a particular application, an *n*-channel MOSFET operates with V_{SB} in the range 0 V to 4 V. If V_{t0} is nominally 1.0 V, find the range of V_t that results if $\gamma = 0.5 \text{ V}^{1/2}$ and $2\phi_f = 0.6 \text{ V}$. If the gate oxide thickness is increased by a factor of 4, what does the threshold voltage become?

5.63 A *p*-channel transistor operates in saturation with its source voltage 3 V lower than its substrate. For $\gamma=0.5~{\rm V}^{1/2}$, $2\phi_f=0.75~{\rm V}$, and $V_{r0}=-0.7~{\rm V}$, find V_r .

*5.64 (a) Using the expression for i_D in saturation and neglecting the channel-length modulation effect (i.e., let $\lambda = 0$), derive an expression for the per unit change in i_D per °C $\left[\left(\partial i_D/i_D\right)/\partial T\right]$ in terms of the per unit change in k_n' per °C $\left[\left(\partial k_n'/k_n'\right)/\partial T\right]$, the temperature coefficient of V_t in V/°C $\left(\partial V_t/\partial T\right)$, and V_{GS} and V_t .

(b) If V_i decreases by 2 mV for every °C rise in temperature, find the temperature coefficient of k'_n that results in i_D decreasing by 0.2%/°C when the NMOS transistor with $V_i = 1$ V is operated at $V_{GS} = 5$ V.

5.65 A depletion-type *n*-channel MOSFET with $k_n'W/L = 2 \text{ mA/V}^2$ and $V_t = -3 \text{ V}$ has its source and gate grounded. Find the region of operation and the drain current for $v_D = 0.1 \text{ V}$, 1 V, 3 V, and 5 V. Neglect the channel-length-modulation effect.

5.66 For a particular depletion-mode NMOS device, $V_r = -2 \text{ V}$, $k'_n W/L = 200 \,\mu\text{A/V}^2$, and $\lambda = 0.02 \,\text{V}^{-1}$. When operated at $v_{GS} = 0$, what is the drain current that flows for $v_{DS} = 1 \,\text{V}$, $2 \,\text{V}$, $3 \,\text{V}$, and $10 \,\text{V}$? What does each of these currents become if the device width is doubled with L the same? With L also doubled?

*5.67 Neglecting the channel-length-modulation effect, show that for the depletion-type NMOS transistor of Fig. P5.67, the i-v relationship is given by

$$i = \frac{1}{2} k'_n(W/L) (v^2 - 2V_t v) \qquad \text{for } v \ge V_t$$

$$i = -\frac{1}{2} k'_n(W/L) V_t^2 \qquad \text{for } v \le V_t$$

(Recall that V_t is negative.) Sketch the i-v relationship for the case: $V_t = -2 \text{ V}$ and $k'_n(W/L) = 2 \text{ mA/V}^2$.

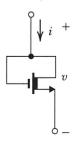


Figure P5.67