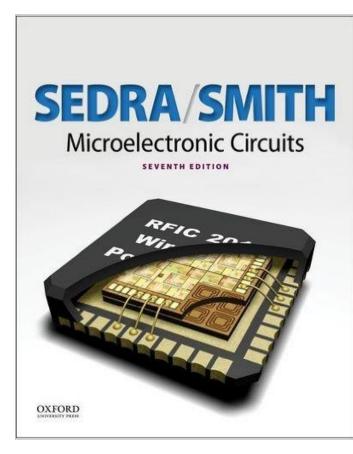
# ECE 523/421 – Analog Electronics

#### Lecture 1: Introduction to Analog Electronics


#### Payman Zarkesh-Ha

Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: <u>pzarkesh@unm.edu</u>

#### **Textbook and Background**

- Main reference material is your notes in the class and the handouts
- □ The main textbook is:
  - A. Sedra and K. Smith, "Microelectronic Circuits", 7th edition, Oxford University Press, 2014, ISBN-978-0199339136
- Lecture Notes: combination of slides, homework and announcements
  - Slides will be posted on the class webpage
  - Class webpage: <u>www.unm.edu/~pzarkesh/ECE523</u>

#### **Textbooks and Outline**



- Basic CMOS Amplifiers
- Basic BJT Amplifiers
- Cascode Amplifiers
- Current Mirrors
- Differential Amplifiers
- Frequency Response
- Feedback Analysis
- Stability Analysis with Feedback
- Frequency Compensation
- Power Amplifiers

# **Grading Policy**

#### □ Your grade in the course will be comprised of:

#### ECE523 and ECE421 Students

- Homework (20%)
- Design Project (20%)
- Tests (30%)
- Final Exam (30%)
- There will be 2 midterm tests, but only 1 will be considered and the worst test will be ignored. Therefore, there is no makeup tests or exams.
- □ Final letter grade will be based on curve and class performance
- □ Your participation in class is very important

#### □ Suggestions for success:

- Participate in the class and ask questions
- Read the textbook
- Work on problems

#### **Homework Policy**

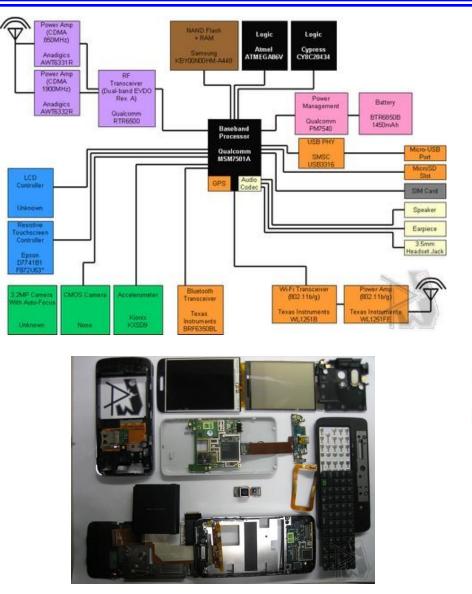
- Homework will be assigned for each week. Please refer to the class website for the homework assignments.
- □ Homework due at the beginning of the lecture. No exception!
- Solutions will be posted on the class website as soon as it is available.
- □ Late homework and projects will not be accepted

#### **Course Project**

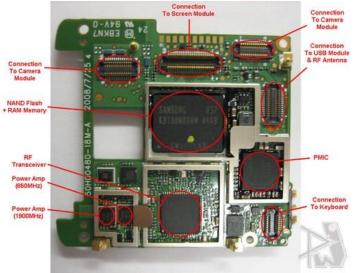
- □ There will be design project assigned including:
  - Circuit Design at the transistor level
  - SPICE simulation to confirm functionality and measure specs
  - No layout is needed for this project
- □ The design problem will be an individual project.
- Project grade will be based on:
  - Quality of report
  - Meeting all the required specifications
  - Simplicity, yet reliability
- There will be a 10% extra credit for any design that is selected as the best project based on the opinion of an external reviewer.

### **Course Objectives**

- Design of advanced analog electronic circuits.
- □ BJT and MOSFET operational amplifiers.
- BJT and MOSFET current mirrors and output stages.
- □ Frequency response and compensation.
- □ Feedback and stability.

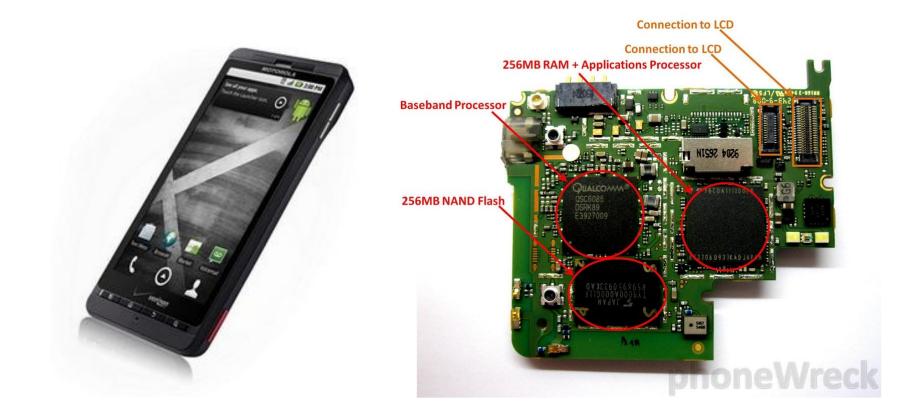

#### **Class Schedule**

#### Warning: Lecture schedule subject to change!!


| Date         | Day | Торіс                                                  | Reading/Coverage |
|--------------|-----|--------------------------------------------------------|------------------|
| August 18    | Mon | Introduction to Analog Electronics                     | Handout          |
| August 20    | Wed | Review of Basic MOSFET Amplifiers I                    | 5.2 - 5.4        |
| August 25    | Mon | Review of Basic MOSFET Amplifiers II                   | 7.1 - 7.5 (CMOS) |
| August 27    | Wed | Review of Basic BJT Amplifiers I                       | 6.2 - 6.4        |
| September 1  | Mon | Labor Day                                              | -                |
| September 3  | Wed | Review of Basic BJT Amplifiers II                      | 7.1 - 7.5 (BJT)  |
| September 8  | Mon | Analog IC Building Blocks: Basic Gain Cells            | 8.1 - 8.2        |
| September 10 | Wed | Analog IC Building Blocks: Cascode Amplifier           | 8.3              |
| September 15 | Mon | Analog IC Building Blocks: Current Sources             | 8.4              |
| September 17 | Wed | Analog IC Building Blocks: Improved Current<br>Mirrors | 8.5              |
| September 22 | Mon | Analog IC Building Blocks: Transistor Pairings         | 8.6              |
| September 24 | Wed | Differential Amplifiers: MOS Differential Pair         | 9.1              |
| October 29   | Mon | Differential Amplifiers: Small Signal Operation        | 9.2              |
| October 1    | Wed | Midterm Exam #1                                        | -                |
| October 6    | Mon | Differential Amplifiers: BJT Differential Pair         | 9.3              |
| October 8    | Wed | Differential Amplifiers: Nonideal Characteristics      | 9.4              |
| October 13   | Mon | Differential Amplifiers: with Active Loads             | 9.5 - 9.6        |
| October 15   | Wed | Frequency Response: Low-frequency Response             | 10.1             |
| October 20   | Mon | Frequency Response: High-frequency Device<br>Models    | 10.2             |
| October 22   | Wed | Frequency Response: High-frequency Response            | 10.3             |
| October 27   | Mon | Frequency Response: Useful Tools for HF Analysis       | 10.4.3 & 10.5    |
| October 29   | Wed | Frequency Response: Examples (CG & Cascode)            | 10.6             |
| November 3   | Mon | Frequency Response: More Examples                      | 10.9 & 10.10     |
| November 5   | Wed | Midterm Exam #2                                        | 3                |
| November 10  | Mon | Feedback: Introduction                                 | 11.1             |
| November 12  | Wed | Feedback: Negative Feedback Properties                 | 11.2             |
| November 17  | Mon | Feedback:Stability Analysis using Bode Plots           | 11.12            |
| November 19  | Wed | Feedback: Frequency Compensation                       | 11.13            |
| November 24  | Mon | Output Stages: Power Amplifiers                        | 12.1 - 12.6      |
| November 26  | Wed | Basic Analog Systems: ADC and DAC Circuits             | Handout          |
| December 1   | Mon | Op-Amp Design Concepts                                 | 13.1 - 13.3      |
| December 3   | Wed | Class Final Review                                     |                  |
| December 10  | Wed | Final Exam (3:00-5:00PM)                               |                  |

ECE523/421 - Lecture 1

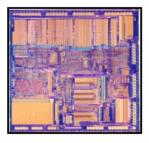
## Example of an Analog ICs in HTC Touch Pro

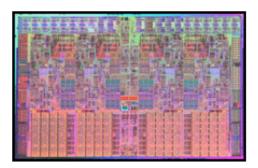







ECE523/421 - Lecture 1


#### Example of an Analog ICs in Motorola Droid



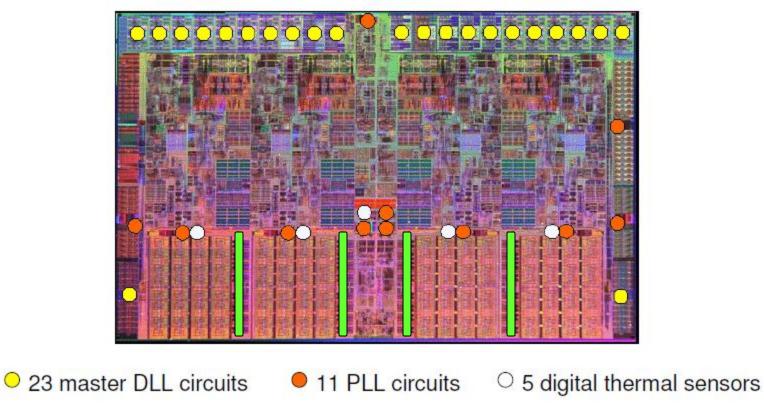

#### Example of an Analog ICs in a DVD Drive



#### Intel's Microprocessor Evolution






Nehalem 731 million >3.6 GHz 4 8 MB 50 GB/sec Sleep Mode Turbo Mode Power Gating Adaptive Frequency Clocking

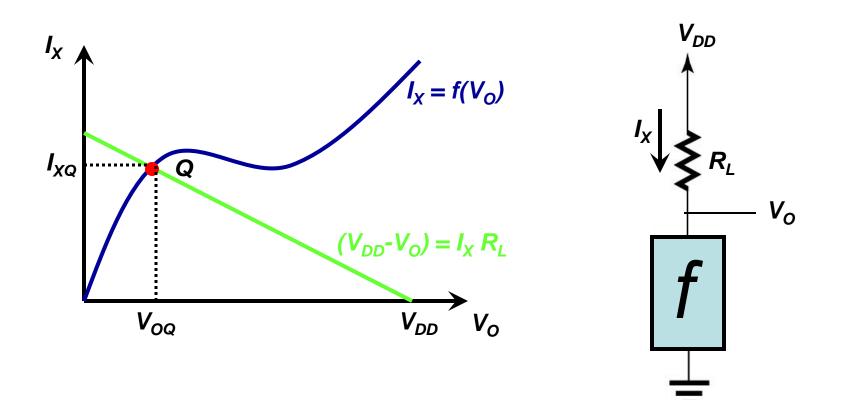
Transistor Count:280Frequency:4# Cores:4Cache Size:4I/O Peak Bandwidth:64Adaptive Circuits:64

<u>Intel386</u>™ 280 thousand 16 MHz 1 None 64 MB/sec

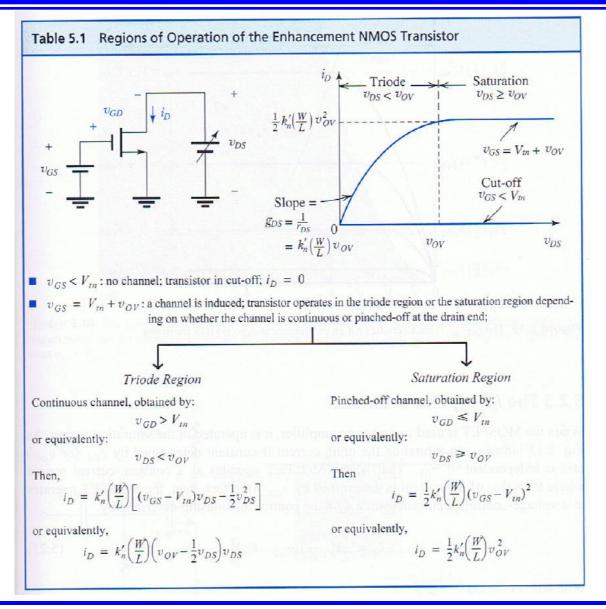
None

#### Analog Subcircuits in 45nm Nehalem CPU

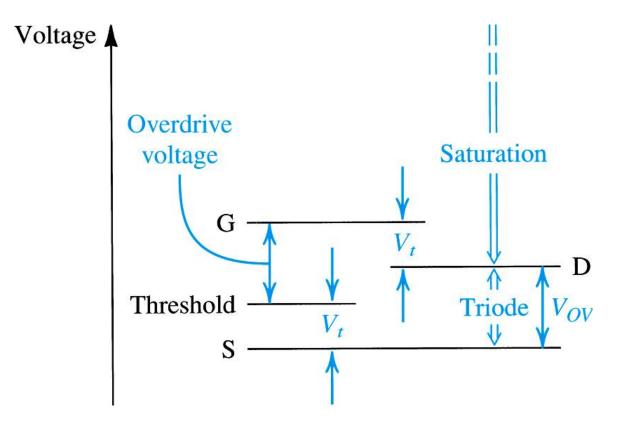



4 arrays of sense amplifiers for cache

#### **Review of MOSFET Amplifiers**

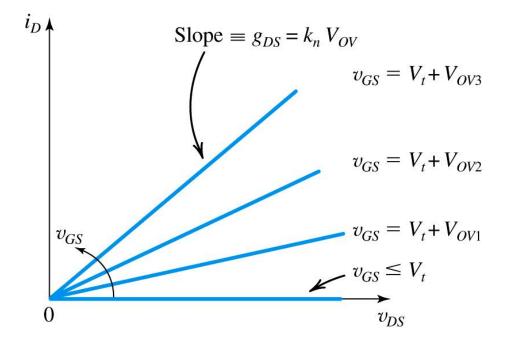

#### □ Concepts of:

- Load Line
- Static Resistance
- Dynamic Resistance
- MOSFET I-V Characteristics
- □ MOSFET Circuits at DC


#### Concept of Load Line, Dynamic and Static R



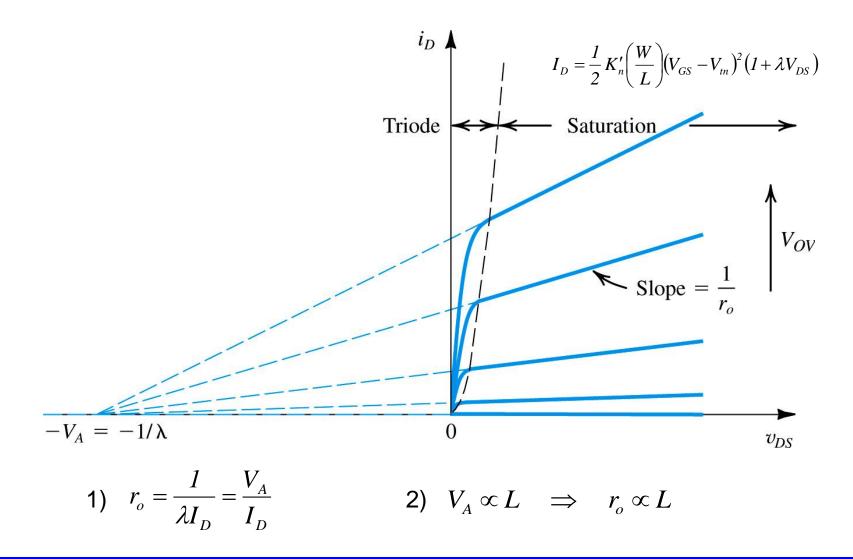
#### **NMOS I-V Characteristics**




# Concept of V<sub>OV</sub> and V<sub>DS-MIN</sub> in NMOS

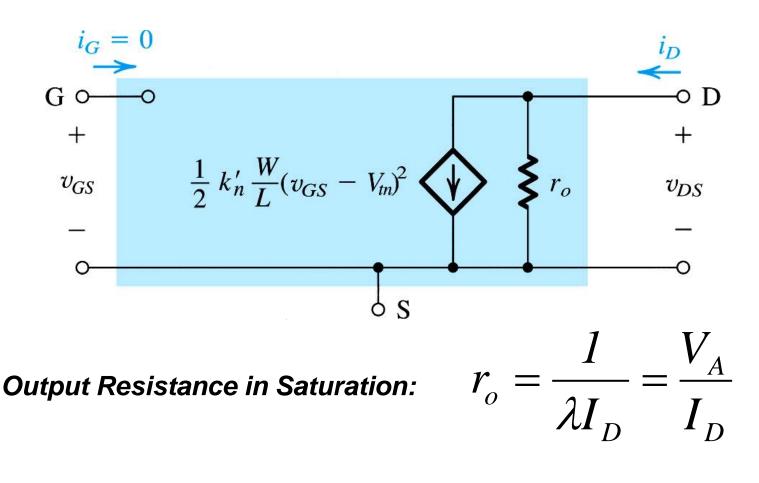


#### How about PMOS?


#### **Dynamic D/S Resistance in Triode Region**

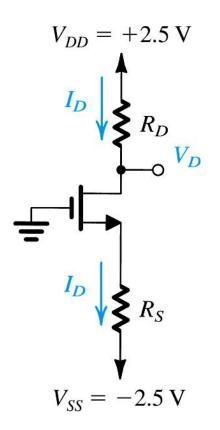


*D/S Resistance in Triode Region:* 


$$r_{DS} = \frac{1}{K_n' \left(\frac{W}{L}\right) (V_{GS} - V_t)}$$

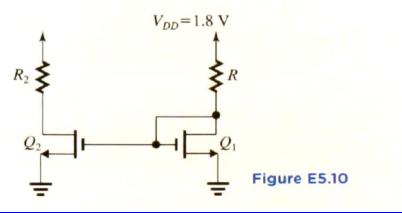
#### **Channel Length Modulation Effect**




ECE523/421 - Lecture 1

#### Large Signal MOSFET Model in Saturation



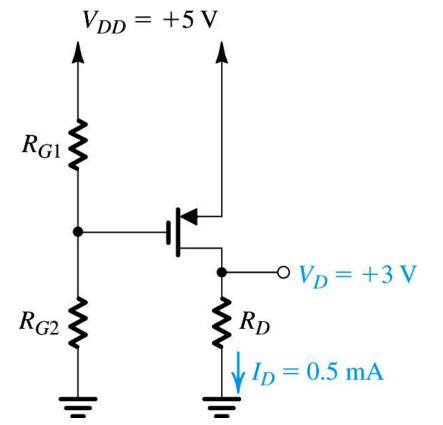

# Notes: 1) For DC analysis, we normally assume λ≈0. 2) It is easier to think of overdrive voltages for DC analysis.

Design the following circuit, so that the transistor operates at  $I_D = 0.4$  mA and  $V_D = +0.5$  V. The NMOS transistor has  $V_t = 0.7$  V,  $K'_n = 100 \mu A/V^2$ ,  $L = 1 \mu m$ , and  $W = 32 \mu m$ . Neglect the channel-length modulation effect.



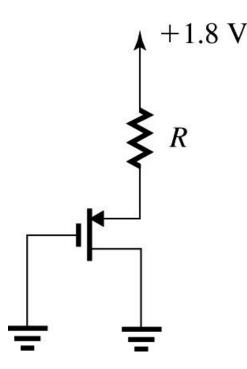
**D5.9** For the circuit in Fig. E5.9, find the value of *R* that results in  $V_D = 0.8$  V. The MOSFET has  $V_{tn} = 0.5$  V,  $\mu_n C_{ox} = 0.4$  mA/V<sup>2</sup>,  $W/L = \frac{0.72 \ \mu m}{0.18 \ \mu m}$ , and  $\lambda = 0$ . **Ans.** 13.9 kΩ +1.8 V **Figure E5.9** 

D5.10 Figure E5.10, shows a circuit obtained by augmenting the circuit of Fig. E5.9 considered in Exercise 5.9 with a transistor Q<sub>2</sub> identical to Q<sub>1</sub> and a resistance R<sub>2</sub>. Find the value of R<sub>2</sub> that results in Q<sub>2</sub> operating at the edge of the saturation region. Use your solution to Exercise 5.9.
 Ans. 20.8 kΩ




ECE523/421 - Lecture 1

Analyze the circuit shown below to determine the voltages at all nodes and the currents through all branches. Let  $V_{tn} = 1 \text{ V}$  and  $K'_n(W/L) = 1 \text{ mA/V}^2$ What is the largest value that  $R_D$  can have while the transistor remains in the saturation mode.




Design the circuit shown below so that the transistor operates in saturation with  $I_D=0.5$ mA and  $V_D=+3V$ . Let  $V_{tp} = -1$  V and  $K'_p(W/L) = 1$  mA/V<sup>2</sup> What is the largest value that  $R_D$  can have while the transistor remains in the saturation mode?



ECE523/421 - Lecture 1

For the circuit below, find the value of R that results in the PMOS transistor operating with an overdrive voltage  $IV_{OV}I = 0.6$  V. The threshold voltage is  $V_{tp} = -0.4$  V, the process tranconductance parameter  $K'_p = 0.1$  mA/V<sup>2</sup> and W/L=10µm/0.18µm.

