ECE 523/421 – Analog Electronics

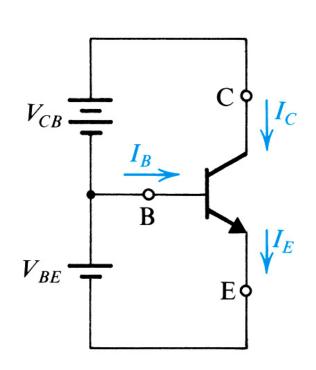
Lecture 4: Basic BJT Amplifiers I

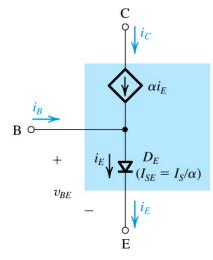
Payman Zarkesh-Ha

Office: ECE Bldg. 230B

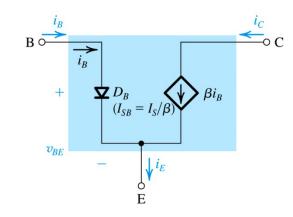
Office hours: Tuesday 2:00-3:00PM or by appointment

E-mail: pzarkesh@unm.edu


Review of Last Lecture

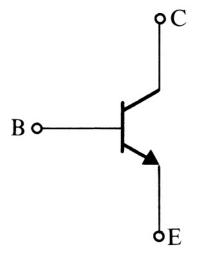

- □ Biasing in MOS Amplifier Circuits
 - Fix V_{GS} Biasing
 - Fix V_{GS} Biasing with Source Resistance
 - Drain-to-Gate Feedback Resistor Biasing
 - Constant Current Source Biasing
- □ Role of Body Effect in MOS Amplifiers
- **☐** Temperature Effect

Today's Lecture


- □ Basic BJT Characteristics
- □ DC analysis on BJT Circuits

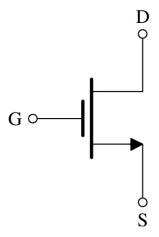
Basic Bipolar Device

T Model



П Model

BJT & MOSFET Comparison


<u>BJT</u>

- □ V_{BE} is always constant (~0.7V)
- □ V_{CE(sat)} is always constant (~0.2V)
- □ I_B is small BUT not zero
- I_C is computed form I_B
- Less parameters to play with

<u>MOSFET</u>

- V_{GS} is not constant (depends on V_{OV})
- □ V_{DS(min)} is not constant depends on V_{OV})
- □ I_G is always zero
- \Box I_D is computed form V_{OV}
- More parameters to play with (V_{OV}, W, and L)

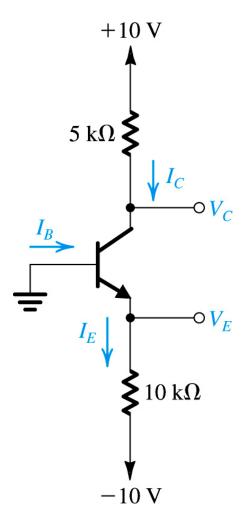
Summary of Equations for BJT

Summary of the BIT Current-Voltage Relationships in the Active Mode Table 6.2

$$i_{C} = I_{S}e^{i_{SE}/V_{T}}$$

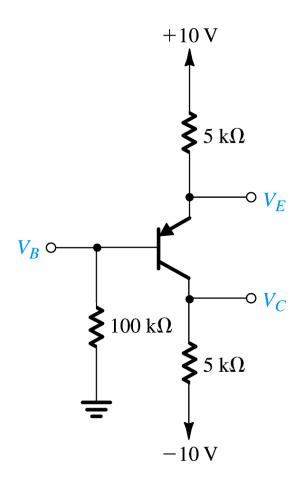
$$i_{B} = \frac{i_{C}}{\beta} = \left(\frac{I_{S}}{\beta}\right)e^{v_{BE}/V_{T}}$$

$$i_{E} = \frac{i_{C}}{\alpha} = \left(\frac{I_{S}}{\alpha}\right)e^{v_{BE}/V_{T}}$$

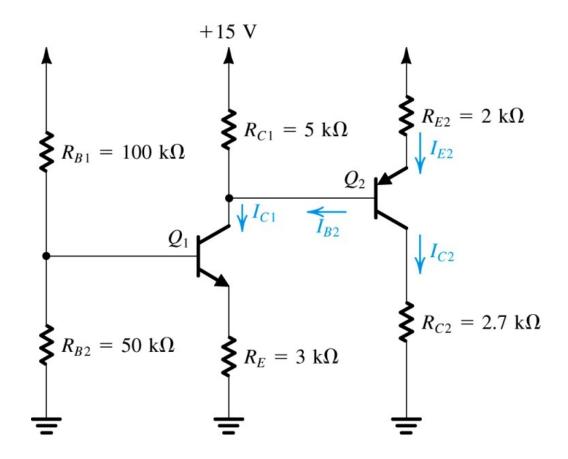

Now: For the pup transistor, replace up with uzz-

$$\begin{split} i_{\mathcal{C}} &= \alpha i_{\mathcal{E}} & i_{\mathcal{E}} &= (1-\alpha)i_{\mathcal{E}} = \frac{i_{\mathcal{E}}}{\beta+1} \\ i_{\mathcal{C}} &= \beta i_{\mathcal{B}} & i_{\mathcal{E}} &= (\beta+1)i_{\mathcal{B}} \\ \beta &= \frac{\alpha}{1-\alpha} & \alpha &= \frac{\beta}{\beta+1} \\ \mathcal{V}_{\tau} &= \text{thermal voltage} = \frac{kT}{q} = 25 \text{ mV} \text{ at room temperature} \end{split}$$

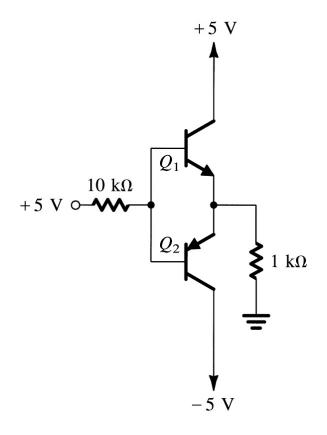
$$r_o = \frac{V_A}{I_C}$$


Example: Bias Circuit Design I

1) Find I_C , I_B , I_E , V_C and V_E .


Example: Bias Circuit Design II

1) If $V_B=1V$ and $V_E=1.7V$, find α , β , and V_C .


Example: Bias Circuit Analysis I

1) Analyze the following circuit. Assume that β =100 for both transistors.

Example: Bias Circuit Analysis II

1) Analyze the following circuit. Assume that β =100 for both transistors.

