

Problems Concerning Acidosis

1. We are still debating the biochemical cause of metabolic acidosis!

- 2. Our calculations of the muscle buffer capacity have been and remain invalid!
- 3. We do not know how to compute the H⁺ load of contracting muscle during intense exercise.
- 4. How do we interpret evidence of improved muscle contractile function caused by acidosis?
- Does the Stewart (Physico-chemical) theory of acid-base balance explain exercise-induced metabolic acidosis?

Historical Summary

• Acid-base chemistry was not established and proven until the mid-1940's!

• The unproven concept of a lactic acidosis was developed without research evidence, without an understanding of acid-base chemistry, and was left unchallenged for almost 200 years.

• More modern scientific inquiry and interpretation (1950 – 2000) has been based on the tight correlations between lactate accumulation and muscle pH.

• Initial academic challenges to a lactic acidosis began in the 1970's.

• Lactic acidosis has been cemented as a construct in the basic, clinical and applied sciences, and remains difficult to eradicate.

Research Content

The terms "lactic acid" and "lactic acidosis" are still routinley used in research publications from prestigious journals!

Stringer W., Wasseman K, Casaburi R. et al., Lactic acidosis as a facilitator of oxyhemoglobin disociation during exercise. J. Appl. Physiol. 76(4):1462-1467, 1994.

• p.1462: ".....the newly formed lactic acid (pK=3.8) must be completely buffered in the cell Because HCO₃⁻ is the predominant buffer of lactic acid"

Boning D., Maassen N., Thomas A., Steinacker JM. Extracellular pH defense against lactic acid in normoxia and hypoxia before and after a Himalayan expedition. Eur. J. Appl. Physiol. 84:78-86, 2001.

 Wals B., Tiivel T., Tonkonogi M., Sahlin K. Increased concentrations of Pi and lactic acid reduce creatine-stimulated respiration in muscle fibers. J. Appl. Physiol. 92(6):2273-2276, 2002.

UNM

Table 15-2 Reactions of glycolysis					
Step	Reaction	Enzyme	Type*	ΔG°′	ΔG
1	Glucose + ATP \longrightarrow glucose 6-phosphate + ADP + H ⁺	Hexokinase	а	·· -4.0	-8.
2	Glucose 6-phosphate ==== fructose 6-phosphate	Phosphoglucose isomerase	с	+0.4	_0.
3	Fructose 6-phosphate + ATP \longrightarrow fructose 1,6-bisphosphate + ADP + H ⁺	Phosphofructokinase	а	-3.4	-5.
4	Fructose 1,6-bisphosphate ==== dihydroxyacetone phosphate + glyceraldehyde 3-phosphate	Aldolase	е	+5.7	-0.3
5 x 2	Dihydroxyacetone phosphate ==== glyceraldehyde 3-phosphate	Triose phosphate isomerase	с	+1.8	+0.6
6	Glyceraldehyde 3-phosphate + P _i + NAD ⁺ ====================================	Glyceraldehyde 3-phosphate dehydrogenase	f	+1.5	-0.4
7	1,3-Bisphosphoglycerate + ADP ===== 3-phosphoglycerate + ATP	Phosphoglycerate kinase	а	-4.5	+0.3
8	3-Phosphoglycerate ==== 2-phosphoglycerate	Phosphoglyceromutase	b	+1.1	+0.2
9	2-Phosphoglycerate === phosphoenolpyruvate + H ₂ O	Enolase	d	+0.4	-0.8
10	Phosphoenolpyruvate + ADP + $H^+ \longrightarrow pyruvate + ATP$	Pyruvate kinase	а	-7.5	-4.0

What causes metabolic acidosis in skeletal muscle?				
Acidosis develops when the rate of H ⁺ production exceeds the rate of H ⁺ removal/buffering				
H ⁺ production	H+ removal/buffering			
Glycolytic flux ATP hydrolysis • <i>FT motor unit recruitment</i> Proton release from reactions Electrolyte shifts	CrP hydrolysis Mitochondrial transport Proteins/amino acids HCO ₃ ⁻ Inorganic phosphate Sarcolemmal transport			
	Lactate production			

Conclusions

• Modeling proton load and metabolic buffering reveals the importance/validity of ATP hydrolysis as the cause of metabolic acidosis in contracting skeletal muscle.

• Controversy still exists as to the likelihood that electrolyte shifts contribute to acidosis.

• Both the LDH and CK reactions cause the initial alkalization of contracting skeletal muscle.

• Lactate production is the most important metabolic H⁺ buffering reaction.

• If muscle did not produce lactate, we would not be able to perform intense exercise for durations in excess of 10 - 20 s.