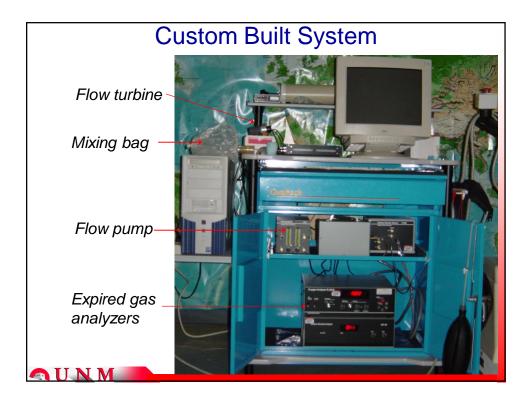

Nutrient Compound	Bomb Cal Kcals/gram	Body* <u>Kcals</u> /gram	RQ	Kcals/L VO ₂
Carbohydrate				
Mixed	4.1	4.0	1.0	5.05
Glycogen	4.2		1.0	5.05
Glucose	3.7		1.0	4.98
Fructose	3.7		1.0	5.00
Glycerol	4.3		0.86	5.06
Fat				
Mixed	9.3	9.0	0.7	4.73
Palmitate (C16:0)	9.3		0.7	4.65
Stearate	9.5		0.69	4.65
Triacylglycerol (C18:0)	9.6		0.7	4.67
Triacylglycerol (C10-15:0)	8.4		0.74	4.69
Protein				
Mixed	5.7	4.0	0.81	4.46
Alanine	4.4		0.83	4.62
Aspartate	2.69		1.17	4.60
Glutamate	3.58		1.0	4.58
Isoleucine	6.89		0.73	4.64
Alcohol	7.1	7.0	0.82	4.86
Mixed Diet			0.84	4.83


Lloot rologoo	0		a ulu colo o to	macronutrients
	α	calonc e	Juivalents	macionuments

	The heat release and caloric equivalents for oxygen for the main macronutrients of catabolism (<i>simplified</i>).							
Food	Rubner's kcal/g	Kcal/g (Bomb cal.)	Kcal/g (body)	RQ	Kcal/L O ₂			
CHO mix	4.1	4.1	4.0	1.0	5.05			
Fat mix	9.3	9.3	8.9	0.70	4.73			
Protein mix	4.1	5.7	4.3	0.81	4.46			
Alcohol		7.1	7.0	0.82	4.86			
Mixed Diet				0.84	4.83			

Non-Protein RER Table	RQ	kcal/L O ₂	% CHO*	kcal/L O ₂ CHO	% FAT	kcal/L O ₂ FAT
	1.00	5.047	100.00	5.047	0.0	0.000
	0.99	5.035	96.80	4.874	3.18	0.160
	0.98	5.022	93.60	4.701	6.37	0.230
	0.97	5.010	90.40	4.529	9.58	0.480
	0.96	4.998	87.20	4.358	12.80	0.640
	0.95	4.985	84.00	4.187	16.00	0.798
	0.94	4.973	80.70	4.013	19.30	0.960
	0.93	4.961	77.40	3.840	22.60	1.121
	0.92	4.948	74.10	3.666	25.90	1.281
	0.91	4.936	70.80	3.495	29.20	1.441
	0.90	4.924	67.50	3.324	32.50	1.600
	0.89	4.911	64.20	3.153	35.80	1.758
	0.88	4.899	60.80	2.979	39.20	1.920
	0.87	4.887	57.50	2.810	42.50	2.077
	0.86	4.875	54.10	2.637	45.90	2.238
	0.85	4.862	50.70	2.465	49.30	2.397
	0.84	4.850	47.20	2.289	52.80	2.561
	0.83	4.838	43.80	2.119	56.20	2.719
	0.82	4.825	40.30	1.944	59.70	2.880
	0.81	4.813	36.90	1.776	63.10	3.037
	0.80	4.801	33.40	1.603	66.60	3.197
	0.79	4.788	29.90	1.432	70.10	3.356
	0.78	4.776	26.30	1.256	73.70	3.520
	0.77	4.764	22.30	1.062	77.20	3.678
	0.76	4.751	19.20	0.912	80.80	3.839
	0.75	4.739	15.60	0.739	84.40	4.000
	0.74	4.727	12.00	0.567	88.00	4.160
	0.73	4.714	8.40	0.396	91.60	4.318
	0.72	4.702	4.76	0.224	95.20	4.476
	0.71	4.690	1.10	0.052	98.90	4.638
	0.707	4.686	0,0	0.000	100.00	4.686

Definitions & Abbreviations Used in Calorimetry

VO₂ Oxygen consumption

- VCO₂ Carbon dioxide production
- **RQ** Respiratory quotient = VCO_2 / VO_2 for the cell
- **RER** Respiratory exchange ratio = VCO_2 / VO_2 measured from expired air

Kcal/L The energy release from metabolism for each L of VO₂

Bomb Calorimeter: instrument used to combust food and measure the VO_2 , VCO_2 , and heat release.

Respirometer: instrument that quantifies the body's VO_2 and VCO_2 .

QUESTIONS

1. Why are the Kcals/g values less for the body, especially for protein catabolism?

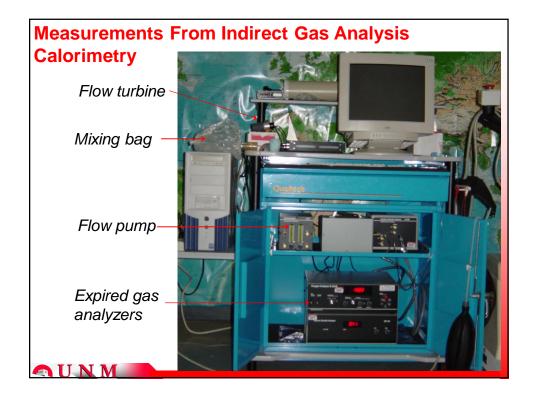
2. Which type of molecule provides the greatest amount of energy per mass?

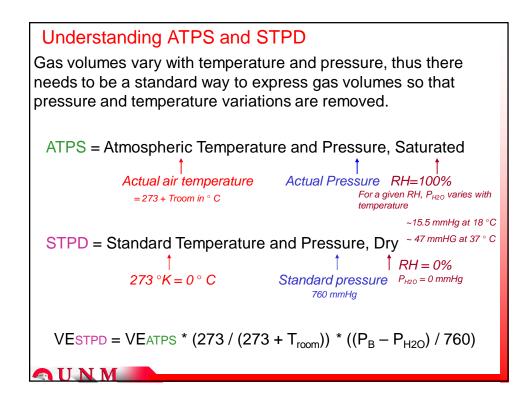
3. If fat provides a greater store of energy, why does CHO provide more energy relative to VO₂? *(hint, think back to catabolism!!)*

4. What is the RQ, and why is it important to assess during rest and exercise?

Open-circuit Indirect Calorimetry

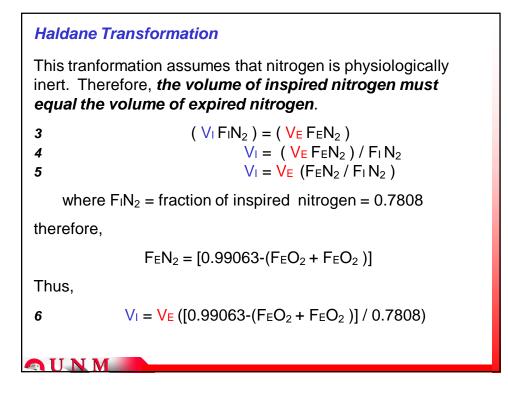
When concerned with exercise, the predominant application of indirect calorimetry is for the measurement of **oxygen consumption** (VO₂). The measure is used to assess the *metabolic intensity* of the exercise.

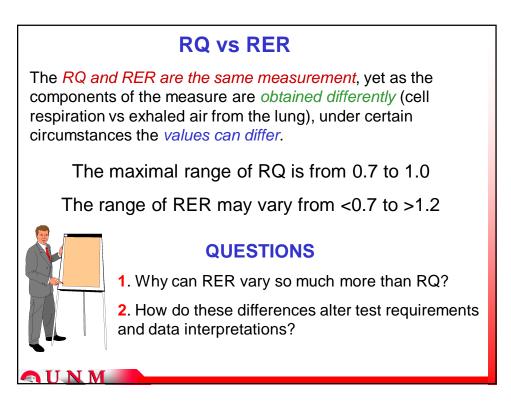

Indirect Gas Analysis Calorimetry


Fundamental Principles

1. That the volume of oxygen consumed (VO_2) by the body is equal to the difference between the volumes of inspired and expired oxygen.

2. That the volume of carbon dioxide produced (VCO₂) by the body is equal to the difference between the volumes of expired and inspired carbon dioxide.



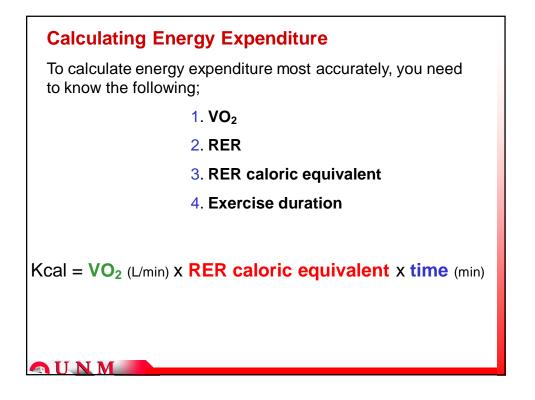


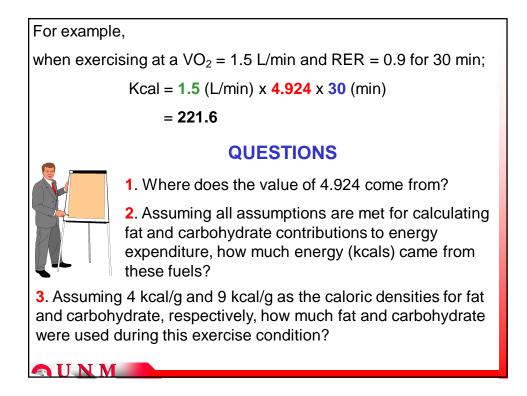
		System	Temperature	Pressure	RH	Water Vapor
emp (°C)	P _{H2O} (mmHg)	Douglas bag	Room Temp	Barometric pressure	100%	Depends on ga temp
14	12.9	Expired turbine at mixing chamber	Room Temp^	Barometric pressure	100%	Depends on ga temp
15	13.5	Expired turbine at mouthpiece	37 °C*	Barometric pressure	100%	Depends on ga
16	14.1	Inspired turbine or flow meter	Room Temp	Barometric pressure	depends on gas	temp Depends on ga
7	14.9	hispited tablie of now meter	Room remp	Darometric pressure	temp and water	temp and RH
3	51.5				vapor pressure	
	16.5	^preferably, gas temp is measured *assumes normal core temperature	at mixing champer Otherwise, gas t	emp = core temp		
	17.5					
1	18.7			(# 19		
2	19.8		-	A	194 -V_	
23	21.1					
24	22.4		The A		THE I	
5	23.8		a pre-		- M	
6	25.2		FOIL	1 miles		
7	26.7					
	28.3					
	30.0				Sector Manager	
0	31.8					
	33.7		THE R. LEWIS CO.			
2	35.7					
3	37.7				FEED	
4	39.9				E F	
	42.2			1000	100	line)
5	44.6		A me	The state of the		
			2)0	The IN SUR		107
						Contract of the second s
8 7	47.1	9		1229	0	
6 7 8	47.1 49.4		MONARK		181	
35 36 37 38 39 40	47.1		MONARK	Ergomedic 8	F	

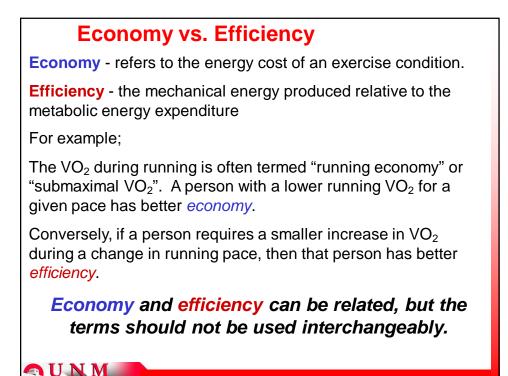
Calculating VO21 $VO_2 = V_1O_2 - V_EO_2$ as a gas volume = the volume of air multiplied by the gas
fraction;2 $VO_2 = (V_1 F_1O_2) - (V_E F_EO_2)$ where F_1O_2 = fraction of oxygen in inspired air = 0.2095
 F_EO_2 = fraction of oxygen in expired air = variableTo prevent the need to measure both inspired and expired
volumes, and introduce the measure of carbon dioxide, the
Haldane transformation is used.

Incorporating equation 6 into 2 provides the final equation to calculate VO₂. $VO_2 = (V_E ([0.99063 - (F_EO_2 + F_EO_2)] / 0.7808) \times F_IO_2) - (V_E F_EO_2)$ $Calculating VCO_2 \qquad V_1 \\ VCO_2 = V_ECO_2 - V_1CO_2$ where F_ICO_2 = fraction of carbon dioxide in inspired air = 0.0003 $VCO_2 = (V_E F_ECO_2) - (V_1 \times 0.0003)$ Calculating RER RER = VCO_2 / VO_2

The assumption of equality between RQ and RER cannot be made during the following;


1. **Metabolic acidosis** - inflates VCO₂ causing RER>1.0


2. Non-steady state exercise - lower than expected VO_2 and a likelihood for an inflated VCO_2 and RER.


3. Hyperventilation - causes a higher VCO₂ and inflates the RER.


4. Excess post-exercise VO₂ - sustained elevated VO₂ can cause RER to be lower than expected.

5. **Prolonged exercise** - if CHO nutrition was poor and muscle and liver glycogen are low, the longer the exercise session that greater the amino acid oxidation.

Computation Examples in Indirect Calorimetry

Convert the following environmental gas volumes to STPD based on the conditions of : *Tr=24.0 °C; P_B=635 mmHg; RH=100%; P_{H20}=22.4 mmHg*

12 L/min ; 59 L/min ; 130 L/min ; 180 L/min

Time	VE (ATPS)	FEO ₂	FECO ₂
0	9.35	0.1658	0.0390
4	35.14	0.1496	0.0480
8	72.37	0.1575	0.0499
12	175.03	0.1784	0.0362
	0 4 8	4 35.14 8 72.37	0 9.35 0.1658 4 35.14 0.1496 8 72.37 0.1575

Answers Expired volume correct to STPD: 12 = 8.89 L/min ; 59 = 43.71 L/min ; 130 = 96.31 L/min ; 180 = 133.36 L/min										
VO ₂ , VCO ₂ and RER Questions:										
Time	VE (STPD)	FEO ₂	FECO ₂	VO ₂	VCO ₂	RER				
0	6.93	0.1658	0.0390	0.312	0.268	0.859				
4	26.04	0.1496	0.0480	1.645	1.242	0.755				
8	53.62	0.1575	0.0499	2.823	2.660	0.942				
12	129.68	0.1784	0.0362	3.866	4.656	1.204				