

• Is one of either machines or free weights superior for strength, power or endurance?

• No.

• Are 5-6 repetitions to failure/set superior for strength gains than sets with more repetitions?

• No. Data suggest that gains are similar for 3 to 20 repetitions.

4. Number of Sets - Untrained Subjects

• Are strength gains larger when untrained subjects perform multiple sets?

• Insufficient evidence! Most research reveals that 1 set is sufficient for optimal strength gains.

5. Number of Sets - Resistance-Trained Subjects

 Do trained subjects need more sets?

•No. Most research reveals that 1 set is sufficient for optimal strength gains, even for trained subjects.

UNM

UNN

6. Rest Interval Between Sets

• Does increasing rest between sets improve strength training adaptations?

• Insufficient evidence!

7. Exaggerating the Eccentric Component

• Is there an added benefit to training when only doing the eccentric component of a muscle action?

• No!

DUNM

8. Number of sessions/week

• Is an increased frequency of training above 3/week beneficial for improved strength gains?

• Although a seemingly logical recommendation, there is no research support for this belief, not even for highly trained athletes!

9. Split Routines

• Does the use of split routines to increase training volume increase strength gains?

• Although a popular practice, there is no research support for split routines, not even for highly trained athletes!

10. Periodization in Training

• Do greater strength gains result from application of periodization principles in a long-term training program?

• No research evidence!

11. High Repetitions and Muscular Endurance

• Does muscular endurance increase more when performing training with high repetitions?

• No research evidence!

<u>UNM</u>

13. Hypertrophy

• Is muscle hypertrophy increased more with high resistance and volume training?

• No research evidence!

Recommended Research Topics In Resistance Exercise and Training

- Machines vs. Free Weights
- Number of repetitions/set
- Number of sets/session
- Velocity of muscle contractions
- Explosive contractions for muscular power
- Optimal recovery between sets

UNM

Recent Research From UNM What is the decrement in strength as RM Increases? Can we more accurately predict 1RM strength from multiple RM tests?

70 subjects (34 men, 36 women) 1, 5, 10 and 20 RM Testing for Chest Press and Leg Press We graphed strength decrement across RM values We calculated 1 RM from 5, 10 and 20 RM tests

Problem	RQ	kcal/L O ₂	% CHO*	kcal/L O ₂ CHO	% FAT	kcal/L O ₂ FAT
	1.00	5.047	100.00	5.047	0.0	0.000
	0.99	5.035	96.80	4.874	3.18	0.160
	0.98	5.022	93.60	4.701	6.37	0.230
	0.97	5.010	90.40	4.529	9.58	0.480
	0.96	4.998	87.20	4.358	12.80	0.640
	0.95	4.985	84.00	4.187	16.00	0.798
	0.94	4.973	80.70	4.013	19.30	0.960
at states "	0.93	4.961	77.40	3.840	22.60	1.121
	0.92	4.948	74.10	3.666	25.90	1.281
	0.91	4.936	70.80	3.495	29.20	1.441
	0.90	4.924	67.50	3.324	32.50	1.600
	0.89	4.911	64.20	3.153	35.80	1.758
	0.88	4.899	60.80	2.979	39.20	1.920
The second se	0.87	4.887	57.50	2.810	42.50	2.077
	0.86	4.875	54.10	2.637	45.90	2.238
	0.85	4.862	50.70	2.465	49.30	2.397
	0.84	4.850	47.20	2.289	52.80	2.561
	0.83	4.838	43.80	2.119	56.20	2.719
	0.82	4.825	40.30	1.944	59.70	2.880
	0.81	4.813	36.90	1.776	63.10	3.037
	0.80	4.801	33.40	1.603	66.60	3.197
	0.79	4.788	29.90	1.432	70.10	3.356
	0.78	4.776	26.30	1.256	73.70	3.520
	0.77	4.764	22.30	1.062	77.20	3.678
	0.76	4.751	19.20	0.912	80.80	3.839
	0.75	4.739	15.60	0.739	84.40	4.000
	0.74	4.727	12.00	0.567	88.00	4.160
N'	0.73	4.714	8.40	0.396	91.60	4.318
	0.72	4.702	4.76	0.224	95.20	4.476
	0.71	4.690	1.10	0.052	98.90	4.638
	0.707	4.686	0,0	0.000	100.00	4.686

Expired gas analysis indirect calorimetry Accounted for body weight in load lifted Measured vertical distance the load was lifted Computed power and work Used load and distance in multiple regression to predict VO₂

