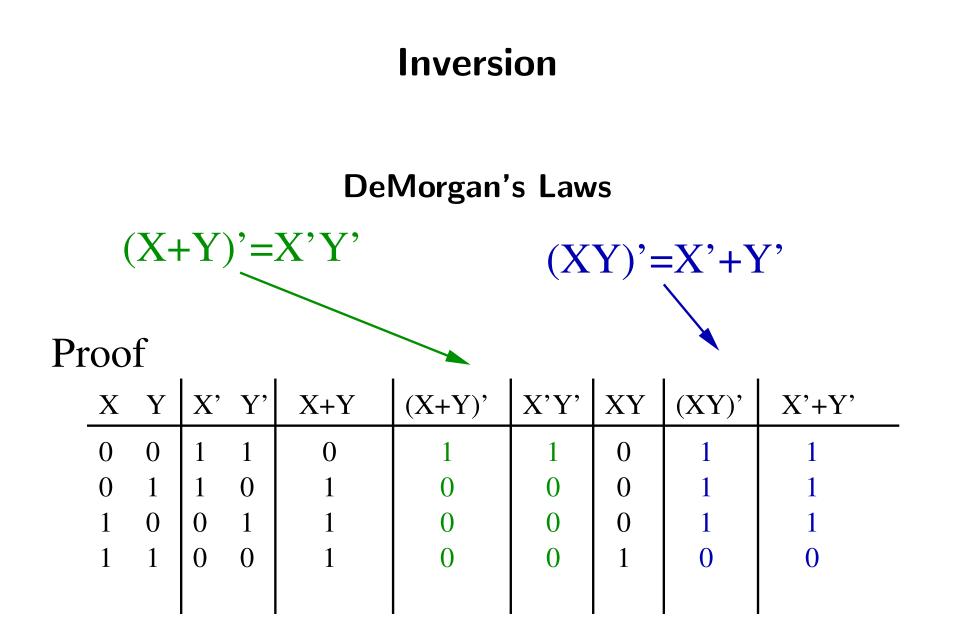
Boolean Algebra - Part 2

September 4, 2008

Inversion

Inversion or Complement of a Function means all 0 outputs become 1 and all 1 outputs become 0.

А	В	F	F'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1



DeMorgan's Laws

For n variables:

$$(X_1 + X_2 + X_3 + \dots + X_n)' = X_1' X_2' X_3' \dots X_n'$$

$$(X_1 X_2 X_3 \dots X_n)' = X_1' + X_2' + X_3' + \dots + X_n'$$

DeMorgan's Laws

For complex expressions, apply DeMorgan's Laws successively. Example:

$$F = A'B + AB'$$

$$(F)' = (A'B + AB')'$$

= $(A'B)' \bullet (AB')'$
= $(A + B') \bullet (A' + B)$
= $AA' + AB + A'B' + BB'$
 $F' = AB + A'B'$

А	В	F	-
0	0	0	1
0	1	1 1 0	0
1	0	1	0
1	1	0	1

DeMorgan's Laws

Another Example: ((a'b + 1)(cd + e' + 0))' (a'b + 1)' + (cd + e' + 0)' $((a'b)' \bullet 1') + (cd)' \bullet (e')' \bullet 0'$ $(a+b') \bullet 0+(c'+d') \bullet e \bullet 1$

Note Expression is not simplified.

DeMorgan's Laws - One Step Rule

 $(f(X_1, X_2, \dots, X_N, 0, 1, +, \bullet))' = f(X_1', X_2', \dots, X_N', 1, 0, \bullet, +)$

1. Replace all variables with the inverse.

- 2. Replace + with \bullet and \bullet with +.
- 3. Replace 0 with 1 and 1 with 0.

Be careful of hierarchy...

This is the biggest source of errors, when applying DeMorgan's Laws. Before beginning, surround all AND terms with parentheses.

- Is this equality true?
 - -AD + A'D' + CD ?=? AD + A'D' + A'C
- Hard to tell
 - Both look minimized...
 - But they look different...
- For many expressions there are multiple *minimal* forms.
- Minimizing is <u>not</u> a good way to determine equality.

- A <u>canonical form</u> is something written in a *standard* way.
 - Two expressions which are equal will have *identical* canonical forms.
- Is there a standard (canonical) way of representing boolean expressions?
 - Yes...

- A <u>canonical form</u> is something written in a *standard* way.
 - Two expressions which are equal will have *identical* canonical forms.
- Is there a standard (canonical) way of representing boolean expressions?
 - Yes... Any ideas about how?

Truth tables \iff **Canonical?**

f = AD + A'D' + CD f = AD + A'D' + A'C

А	В	С	D	f	А	В	С	D	f
0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	0	0	1	0
0	0	1	0	1	0	0	1	0	1
0	0	1	1	1	0	0	1	1	1
0	1	0	0	1	0	1	0	0	1
0	1	0	1	0	0	1	0	1	0
0	1	1	0	1	0	1	1	0	1
0	1	1	1	1	0	1	1	1	1
1	0	0	0	0	1	0	0	0	0
1	0	0	1	1	1	0	0	1	1
1	0	1	0	0	1	0	1	0	0
1	0	1	1	1	1	0	1	1	1
1	1	0	0	0	1	1	0	0	0
1	1	0	1	1	1	1	0	1	1
1	1	1	0	0	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1

Same truth table —two different minimal expressions. Are truth tables canonical forms?

Minterm Expansions

- \bullet Truth table is unique \underline{if} rows in set order
- Each row can be numbered
 - Call each row's AND term a minterm

$$f(A, B, C, D) = m0 + m2 + m3 + m4 + m6$$

m7 + m9 + m11 + m13 + m15

 $f(A, B, C, D) = \sum m(0, 2, 3, 4, 6, 7, 9, 11, 13, 15)$

Minterms

• Are these minterms of four variables?

abcd ab'cd' ab'c a'bc'bd

Minterms

• Are these minterms of four variables?

abcdyesab'cd'yesab'cno, only 3 literalsa'bc'bdno, b more than once

Minterms have names

А	В	С	f	
0	0	0	1	m0 = A'B'C'
0	0	1	0	m1 = A'B'C
0	1	0	1	m2 = A'BC'
0	1	1	1	m3 = A'BC
1	0	0	1	m4 = AB'C'
1	0	1	0	m5 = AB'C
1	1	0	1	m6 = ABC'
1	1	1	1	m7 = ABC

Note: the order of the variables is significant.

Minterm Expansion

• A minterm expansion is *unique*.

$$f(A,B,C,D) = \sum \mathsf{m}(0,2,3,7)$$

- Useful for:
 - Proving equality
 - Shorthand for representing boolean expressions

Maxterms are POS Equivalents to Minterms

А	В	С	f	Minterms	Maxterms
0	0	0	1	m0 = A'B'C'	M0 = m0' = A + B + C
0	0	1	0	m1 = A'B'C	M1 = m1' = A+B+C'
0	1	0	1	m2 = A'BC'	M2 = m2' = A + B' + C
0	1	1	1	m3 = A'BC	M3 = m3' = A + B' + C'
1	0	0	1	m4 = AB'C'	M4 = m4' = A' + B + C
1	0	1	0	m5 = AB'C	M5 = m5' = A' + B + C'
1	1	0	1	m6 = ABC'	M6 = m6' = A' + B' + C
1	1	1	1	m7 = ABC	M7 = m7' = A' + B' + C'
	0 0 0 0 1	0 0 0 0 0 1 0 1 1 0 1 0	000001010011100101	$\begin{array}{cccccccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The maxterms are the inverse of the minterms.

• Are these maxterms of four variables?

$$a+b+c+d$$

 $a+b'+c+d'$
 $a+b'+d'$
 $a'+b+c'+a'+d$

• Are these maxterms of four variables?

$$a+b+c+d$$
yes $a+b'+c+d'$ yes $a+b'+d'$ no, only three literals $a'+b+c'+a'+d$ no, a' more than once

Any function can be written as a product of maxterms. This is called a:

Standard Product of Sums (Standard POS)

Use the **Zeros** for f to write the POS:

А	В	С	f	
0	0	0	0	M0
0	0	1	1	M1
0	1	0	0	M2
0	1	1	0	M3
1	0	0	0	M4
1	0	1	1	M5
1	1	0	1	M6
1	1	1	1	M7
			•	

$$f(A, B, C) = M_0 M_2 M_3 M_4$$

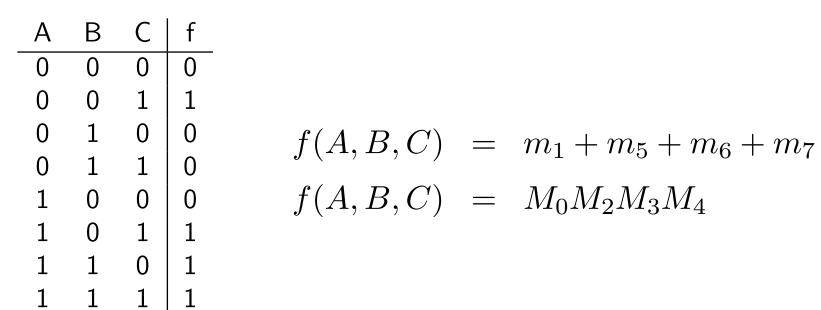
$$f(A, B, C) = \prod M(0, 2, 3, 4)$$

$$f = (A + B + C)(A + B' + C)(A + B' + C')(A' + B + C)$$

- Maxterm expansions are useful
 - For the same things as minterm expansions
- We will use them when we want POS instead of SOP representations

Minterm / Maxterm Relationships

For any function, if a minterm is in the Minterm Expansion, the corresponding maxterm is not in the Maxterm Expansion.



Makes it easy to convert between SOP and POS.

Minterm Example

• Is this equation true?

AD + A'D' + CD = AD + A'D' + A'C

- 1. Write each side as a truth table.
- 2. Compare which minterms each contains

Minterm expansions \iff shorthand truth table

Minterm Example

• Minimize the following:

$$f(A, B, C) = m_1 + m_5 + m_7$$

Minterm Example

• Minimize the following:

$$f(A, B, C) = m_1 + m_5 + m_7$$

- 1. Write out as SOP f = A'B'C + AB'C + ABC
- 2. Minimize

$$f = A'B'C + AB'C + ABC$$

= $A'B'C + AB'C + AB'C + ABC$
= $(A' + A)(B'C) + AC(B' + B)$
= $B'C + AC$

minterm expansions \iff shorthand expressions

Maxterm Example

•Minimize the following:

$$f(A, B, C) = M_1 M_5 M_7$$

1. Write out as SOP

$$f = (A+B+C')(A'+B+C')(A'+B'+C')$$

2. Minimize

$$f = (B+C')(A'+C')$$

maxterm expansions \iff shorthand expressions...

Minterm/Maxterm Example

Convert the following to POS:

F = AB + C

Minterm/Maxterm Example

Convert the following to POS:

$$F = AB + C$$

1. Write minterm expansion

(use truth table if it helps)

- 2. Convert to maxterm expansion
- 3. Write POS from maxterm expansion
- 4. Simplify if desired

Minterm/Maxterm Example

Convert the following to POS:

$$F = AB + C$$

1. Write minterm expansion

 $F = m_1 + m_3 + m_5 + m_6 + m_7$ (use truth table if it helps)

- 2. Convert to maxterm expansion $F = M_0 M_2 M_4$
- 3. Write POS from maxterm expansion F = (A + B + C)(A + B' + C)(A' + B + C)
- 4. Simplify if desired F = (B + C)(A + C)

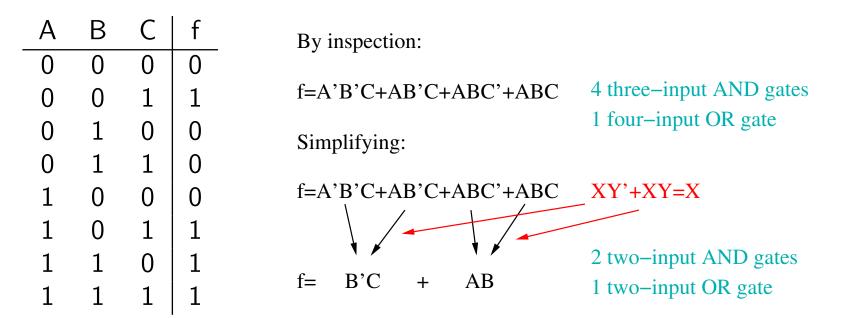
Algebraic Simplification

Algebraic Simplification

Objectives

• Why simplify?

Simpler equations lead to less hardware, faster, cheaper, and less power.



Hardware Cost

- Exact cost depends on technology
 - nMOS, CMOS, TTL, I2L, GaAs, FPGA, ...
- In general:
 - − Fewer literals ⇔ smaller/faster/lower power circuit
 - Inverters don't count
 - * Free in some technologies
 - * Insignificant difference in others

Algebraic Simplification: Which Theorems To Use?

Essential Identities					
X + 0 = X	$X \bullet 1 = X$				
X + 1 = 1	$X \bullet 0 = 0$				
X + X = x	$X \bullet X = X$				
(X')' = X					
X + X' = 1	$X \bullet X' = 0$				
Essential Commutative, Associative, Distributive and DeMorgan's Laws					
X + Y = Y + X	$X \bullet Y = Y \bullet X$				
(X + Y) + Z = X + (Y + Z) =	(XY)Z = X(YZ) = XYZ				
X+Y+Z					
X(Y + Z) = XY + XZ	X + YZ = (X + Y) (X + Z)				
$[f(X_1, X_2, \dots, X_N, 0, 1, +, \bullet)]' = f(X_1', X_2', \dots, X_N', 1, 0, \bullet, +)$					
Essential					
X Y + X Y' = X	(X + Y)(X + Y') = X				
X + XY = X	X(X+Y)=X				
Useful, hard to remer	Useful, hard to remember, easy to re-derive				
(X + Y') Y = XY	XY' + Y = X + Y				

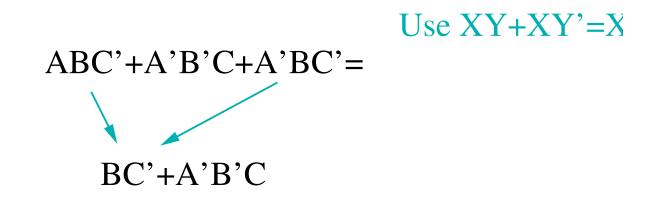
Suggestions:

- 1. Focus on blue ones!
- 2. Create duals onright as needed.
- 3. Be familiar with the last group.

Four Methods of Algebraic Simplification

- 1. Combine terms
- 2. Eliminate terms
- 3. Eliminate literals
- 4. Add redundant terms

1. Combine terms



- 2. Eliminate terms
- 3. Eliminate literals
- 4. Add redundant terms

- 1. Combine terms
- 2. Eliminate terms

$$f = A'B + B(A'D + C)$$
$$= A'B + A'BD + BC$$
$$= A'B + BC$$

Use X + XY = X

- 3. Eliminate literals
- 4. Add redundant terms

- 1. Combine terms
- 2. Eliminate terms
- 3. Eliminate literals

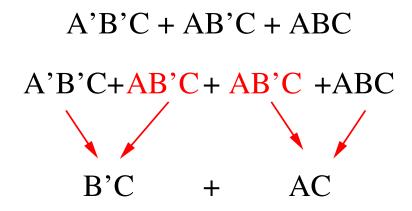
$$f = A'B + A'B'C'D + ABCD'$$

$$= A'(B + B'C'D') + ABCD'$$

- = A'(B + C'D') + ABCD'
- = A'B + A'C'D' + ABCD'
- = A'C'D' + B(A' + ACD')
- = A'C'D' + B(A' + CD')
- = A'B + BCD' + A'C'D'
- 4. Add redundant terms

Use X + X' Y = X + Y.

- 1. Combine terms
- 2. Eliminate terms
- 3. Eliminate literals
- 4. Add redundant terms



Proving an Equation is True

- 1. Construct a truth table for both sides
 - (a) Tedious, not very elegant
 - (b) Computers love this method
- 2. Convert Both Sides to minterm/maxterm expansion
- 3. Manipulate one side algebraically to equal the other
- 4. Perform the same operation on both sides

Perform the same operation on both sides

- Valid Operations
 - Complement
 - Construct the duals
- Invalid Operations
 - Add a term to both sides (not reversible)
 - Multiply (AND) both sides by a term (not reversible)
 - Subtract a term from both sides (subtraction?)

Proving an Equation – Add a term to both sides

Prove y = z

Add 1 to both sides.

Use X + 1 = 1

1 = 1

y + 1 = z + 1

Therefore, y = z.

Proving an Equation – Add a term to both sides

Prove y = z

Add 1 to both sides.

Use X + 1 = 1

Therefore, y = z.

No, NO, NO! You *cannot* add an arbitrary term to both sides. However, this does not prevent you from duplicating an existing term:

y + 1 = z + 1

1 = 1

 $Y=Z\iff Y{+}Y=Z$

Proving an Equation – Multiply (AND) both sides by a term

Prove y = z

Multiply both sides by 0

Use $X \bullet 0 = 0$

 $\mathsf{y} \bullet \mathsf{0} = \mathsf{z} \bullet \mathsf{0}$

0 = 0

Therefore, y = z.

Proving an Equation – Multiply (AND) both sides by a term

Prove y = z

Multiply both sides by 0

Use $X \bullet 0 = 0$

Therefore, y = z.

No, NO, NO! You *cannot* multiply both size by an arbitrary term. However, this does not prevent you from duplicating an existing term:

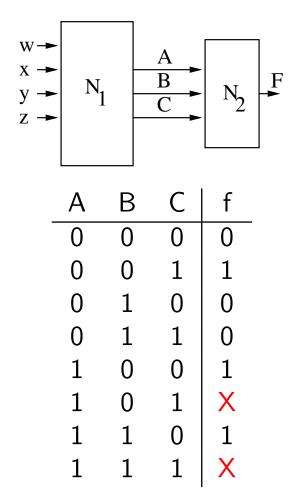
 $y \bullet 0 = z \bullet 0$

0 = 0

 $Y \bullet Z = Y \bullet Y \bullet Z$

Proving an Equation is False

- Show one combination of values which is false (e.g., a counter example).
- Use Boolean algebra manipulation
 - Reduce to sum of products form
 - Minimize
 - Compare the 2 sides
 - Be careful—some expressions have more than one minimal form ...



Known: N_1 does not generate outputs A B C with values of 101 or 111.

The X's represent don't care since those input combos never occur, you don't care what the output is.

А	В	С	f	f_1	f_2	f_3	f_4
0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	1
0	1	0	0	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	1	1	1	1	1
1	0	1	X	0	0	1	1
1	1	0	1	1	1	1	1
1	1	1	X	0	1	0	1

Multiple ways to choose the X's when minimizing. The cost of the *minimal* solution will depend on which combination of values are chosen for the X's.

$$f_{1} = A'B'C + AB'C + ABC'$$

$$f_{2} = A'B'C + AB'C' + ABC' + ABC'$$

$$f_{2} = A'B'C + AC'(B' + B) + AB(C' + C)$$

$$f_{2} = A'B'C + AC'(B' + B) + AB(C' + C)$$

$$f_{2} = A'B'C + AC' + AB$$

								f_1	=	A'B'C + AC'
								f_2	=	A'B'C + AC' + AB
								f_3	=	A'B'C + AB'C' + AB'C + ABC'
A 0	B 0	C 0	<i>f</i> 0	<i>f</i> ₁ 0	$\frac{f_2}{0}$			-	=	A'C(B+B') + AB'(C'+C)
0 0	0 1	1 0	1 0	1 0	1 0	1 0	1 0	f_3	=	A'C + AB' $A'B'C + AB'C' + AB'C + ABC' + ABC$
0 1	$1 \\ 0$	$1 \\ 0$	0	0	0 1	0 1	0 1			
1	0	1	X	0	0	1	1			
1 1	1 1	0 1	1 X	$\begin{vmatrix} 1\\0 \end{vmatrix}$	1 1	1 0	1 1	f_4	=	A'B'C + AB'C' + AB'C + ABC' + ABC
-	-	-			-	Ŭ	-		=	(A' + A)B'C + AB'(C' + C) + AB(C' + C)
									=	B'C + AB' + AB
								f_4	=	B'C + A

 f_4 is the best.

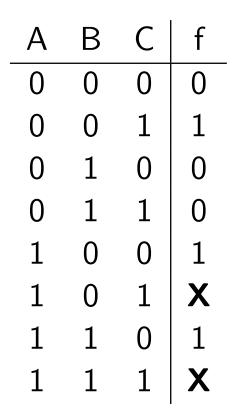
- \bullet If the function has n don't cares
 - Must solve 2n truth tables

- Ouch!

• A better way will be shown in a later chapter...

Don't Cares - Minterm Representation

Don't Cares - Maxterm Representation



Use $D_0...D_7$ to represent don't care maxterms

$$F = M_0 M_2 M_3 D_5 D_7$$

$$F = \prod M(0, 2, 3) \prod D(5, 7)$$