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If each molecule carries with it a property ¥;, then the flux of this property is
Yfim V) dy;
and the total flux across this surface is
total flux = [ Y,/ V) dv, =n- [4,£,V, dv; =n -, (18-22)
The vector \;,

8-23
V=0V, ne

is called the flux vector associated with the property i The com.pon?nt o£ this Vect(z;
in any direction is the transport of the property y; in that direction. Let us no

consider the various examples of ;.

TRANSPORT OF MASS
In this case, ¥; = m;, and

vV, =j 18-24)
Wy =my [ £V dvy = pm V) = (
TRANSPORT OF MOMENTUM
Here y; = m; V;,, and
18-26)
v, = ’"jf VieiVidv; = pjm; ViV, (

which is the flux of the x-component of momentum relative to v, . The flux of momen-
tum is a pressure, which has components

(Pxx = pjm; Vs Vs
(pj)xy = p;m; VIX ij’ ete

or, in general,

(18-26)
Pj=p;m;V;V;
which is the partial pressure tensor of the jth species.
TRANSPORT OF KINETIC ENERGY
2

Yy =4m;V;

and
e 2y, = 18-27)
v, = “j 02V, fydv; =Yp;m; V2V, =g (

the heat flux vector of the jth species. o
It should be clear at this point that once we have an expression for fi(r, v;, 1), we

can calculate all the fluxes and hence all the trapsport pfopertie§ ofa ;illlute1 gas. \;\i?:;
we need now is f;, or at least an equation that gives Jjasits solutlcl)ln. Th'e orll )c/) ic(l)lil tion
we have up to now is Eq. (18-14) with #» = 1, and it can be seen that t lsl a il ain
¥, As we said earlier, nobody has found a successful way to uncouple t lis sy h'C};
I;l the next section we shall derive an equation fm“ Jf;» the Boltzmann equation, whi
is the fundamental equation of the rigorous kinetic theory of gases.
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18-4 THE BOLTZMANN EQUATION

In this section we shall derive the Boltzmann equation for Jj by a simple, physical
argument. The gas is assumed to be dilute enough that only two-body interactions are
ever important. The number of J-molecules in the phase space volume element dr dav;
at the point (r, v;) is given by Jidrdy;. In the absence of collisions in the gas, the
molecules at the point (r, v)) at time t move according to the equations of motion of
the system and arrive at the point (r + v, dt, v, + (1/mp)X; dt) at the time (t + dv).
The quantity X j 1s an external force. Because all the points that start out end up at the
same point (in the absence of collisions), we have that

X.
S, v, 0) =fj(r +vid v, + r—n—’ dt, t + dt) (no collisions) (18-28)
J

But since collisions occur in the gas, not all those molecules that start out at the point
(r, v;) at time ¢ end up at @ +v;d, v + (1/myX, dt) at the time (t + dt). Some mole-
cules leave this stream because of collisions, and furthermore some molecules enter
this stream because of collisions. Let the number of j-molecules lost from the velocity
range (v;, v; + dv;) and the position range (r, r + dr) because of collisions with i-mole-
cules during the time interval (t, t+dt)be ;) dr dv; dt. Similarly, let the number of
J-molecules that join the group of molecules that starts at (r, v;) at time ¢ because of
collisions with i-molecules be T ) dr dv; dt. If we now include these collision terms
in Eq. (18-28), we can write

Si® + ¥, dt, v+ my X dt ¢+ dr) dy dv,
=Jil, vy, Hdedv; + Y (00 — L) dedvydt (18-29)
J J J 7 J J J

If we expand the left-hand side of the equation, we can get (Problem 18-8)

af; X
’L','Vj'vrf:,"l‘

= ’:-ijfj =2 ([P 1,0 (18-30)

m;
The left-hand side of the equation represents the change in J; due to the collisionless
motion of the molecules, called streaming, and the right-hand side represents the
change in Jfj due to collisions. Notice that this equation looks very similar to the
Liouville equation for £,(1,

We now want to find an explicit expression for the collision terms in this equation,

following argument. (See Fig. 18-2). If molecule J is considered to be fixed, the i-mole-
cule approaches it with a relative velocity (v; — V;)) =8y. If A in Fig. 18-2 is the
range of the intermolecular potential, any i-molecule within the cylindrical shell
indicated in the figure will collide with the fixed j-molecule during the time interval dr.
The probable number of i-molecules within this cylindrical shell is

2nfi(x, v;, 0gy,; b db dt

where g;; = |g,;|. The total number of collisions that would occur with this one
fixed j-molecule is

2 dt fff,.(r, Vi, 0g.;b db dv,
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2mb db = d(nb?) . ‘ . —_—
Figure 18-2. Collisions of molecules of type / with one molecule.of typﬁ Je 'l[(hehdllsdtzgli; 13) :1 (}ssgl l;il i 1?,5 fhe
intermolecular distance at which the potential begins to *‘ take hold. rom J. O. h-
;"2151211'1 C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids. New York:
Wiley, 1954.)

The probable number of molecules of type j located in the volume element .dr about r
with velocity between v; and v; + dv; is fj(r, v;, #) dr dv;. Therefore we write

T, dr dv, dt = 2n dr dv, dtff/;.(r, v;, Df(E Vi, g, b db dv;
and see that
T, =2n [[ fifigisb db dv, (18-31)

We should notice at this point that we have assumed that the mean pumber of
i-molecules about the fixed j-molecule is given by the product of f; and f}; i.e., we are
assuming that their positions and velocities are uncorrelated. _The assymptl(.)n,
known as the molecular chaos assumption or the stosszahlansatz, is not stlrlctly true
and is the weakest point in the entire derivation. This turns ogt‘ to be a very important
point, and we shall discuss this later on when we do the critique on the Boltzmann
eql\];::locna;n apply the very same argument that we useq to derive. Eq. (18-31)
to the inverse collisions, i.e., those that scatter particles into the point (r + v; df,
v; + (1/m)X; dt). We can immediately write

I"ji(+) dr dvj dt = 27 dr dvjl dt Jfﬁ(ra vi” t)f;-(l', le, t)gijlb, db’ dvi, (18-32)

where we use primes to indicate those quantities before the collision which will ﬁo
over into b, v;, and v, after the collision. They can be computed from b, v;, and v; by
solving the collisional equations of motion. Liouville’s theorem says that

dr dv; dv;g,; dt b db =dr dv, dv/g;; dt b" db’ (18-33)
Using this, we can rewrite Eq. (18-32) in the form

T = 2m [[ £, v/ 0,06, v7', g1 db dv; (18-34)

= 27zﬂfi’fj’g,jb db dv, (18-35)

where the primes on the f; and f; indicate that the velocity arguments of these func-
tions are primed.
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Substituting Egs. (18-31) and (18-35) into Eq. (18-30) finally gives the Boltzmann
equation:
af; 1 vy
vV + X0 Vi = 27ci2ff{f,-fj ~ fif}g:;b db dv, (18-36)

This is an integrodifferential equation for /" We have one such equation for each
component of the gas. Notice that the equations of motion, and hence the intermolec-
ular potential, enter this equation implicitly in the integrand on the right-hand side,
The functions f;' and J;' depend upon the postcollisional velocities v/’ and v/, which
depend upon the precollisional velocities v; and v; through the equations of motion
governing the collision. Notice also that once the right-hand side is integrated over b
and v;, the only variables left are r, v;, and ¢, exactly those variables on which the left-
hand side depends.

For several reasons which we shall discuss, the Boltzmann equation is a remarkable
equation. The derivation we have presented here is the standard derivation and has the
advantage of being simple and physical,

The Boltzmann equation is not only an integrodifferential equation, but a nonlinear
one as well. Solving such an equation is not simple, but it turns out that there exists a
very elegant and straightforward approximate scheme due to Hilbert, Chapman, and
Enskog, which we shall present in the next chapter. Before doing this, however, we

can extract some very interesting consequences from the Boltzmann equation without
a great deal of work. '

18-5 SOME GENERAL CONSEQUENCES
OF THE BOLTZMANN EQUATION

First, we shadl discuss the equations of change. The fundamental equations of con-
tinuum mechanics that we derived in Chapter 17 may be obtained from the Boltzmann
equation without determining the form of /- If we multiply the Boltzmann equation for
Ji by ¥; and integrate over v,, we obtain

of, 1
fl//i {‘—f—l -+ V,' * Vrf‘, +— Xi ' Vv»f‘i}dvi
ot m; !

=2n ;ﬂf VLSS —fif)gisbdb dv,dv,  (18-37)

Each of the three terms on the left-hand side of Eq. (18-37) can be transformed into
more convenient forms:

f‘pi%d"i =§tfl//ifi dv; — ff; %'{idvi

G o,
=% (o) — p; 5 (18-38)

flpivix Z_{cl dv; = % f‘//ivixfi dv; — ff; Vix % av;

0 E T— o,
= 5; (Pi‘//i Vi) — PiVix _a;

oy,
=—p EZI— (18~40)

(18-39)
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We have assumed that the external force X; appearing in Eq. (18-37) is independent of
v,. Putting these results together, we can write Eq. (18-37) as

Nl o T {5% —— X——}
Y + Vo piivi—py Y +; Vrl:[/i+mi Vot

=203 [[Jirisy = 1wt b dvi (18-41)

This is known as Enskog’s general equation of change for the property ;. We shall
now show that if ¥, is any of the collisional invariants, i.e., 7;, m;V;, or 4m;v;?, the
right-hand side of Eq. (18 —41) vanishes when summed over i. To prove this, first
notice that the integral

[[[wirisy =ifDgub db dvids; (18-42)
is equal to the integral
[[[witris; = fisgu'® ab' v/ dvy (18-43)

which is written in terms in inverse collisions (Problem 18-9). This is so because an
integral over a collision in one direction must be the same as an integral over a collision
in the opposite direction. This can be seen from Fig. 16-3. Furthermore, from
Liouville’s theorem and from the dynamics of molecular collisions, we know that

gij=9ij» b="¥, dv,dv; = dv/ dv/ (18-44)
and so Eq. (18-43) may be written as
~([[wicrisy =1isDgub db dvidvy (18-45)

Since the integrals of Eqs. (18-42) and (18-45) are equal to each other, they must also
each be equal to one-half the sum of the two. This gives us that (Problem 18-10)

[[[wisisy = fisayb db dvidv,
=3 [[[ = WSSy =S Douyb db dvidy;  (18-46)

Note that if ; = m;, then the integrand equals zero. This is simply because the mass of
the ith species is conserved in an elastic collision.
Now if we sum Eq. (18-46) over both i/ and j and then interchange the dummy

indices 7'and j, we get
33 ([ @0 = OIS —if)g b db dvidy
=%, ”f Wy — WSS = Fif)gybdbdvidv;  (18-47)

Since these two integrals are equal to each other, each equals one-half of the sum of the
two, and so we can finally write (Problem 18-11)

3 [[[ i =it o dvy
=4 gr”f Wi+ W= — S = fifdgybdbdvidy;  (18-48)
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l\lllow 1[/,.h+ l,bjh— ¥ — ;" vanishes when ¥, = m;, m;v;, or tm,v;%, and so we have
shown that the sum of the right-hand side of Eq. (18-4 r i i
o g. ( 1) over i equals zero. This

0 S ET X,
712 @) + Ve Yo ~ ) pi{Ef Ve Vel Vvu//,-} =0 (18-49)
as the general equation of change.
If we let y; = m;, Eq. (18-41) becomes
ap; v
Y + Ve (piv) =0 (18-50)
This is the continuity equation for the ith species. If we sum this over i and use
Eq. (18-18), we get the continuity equation for the entire system:
L
5 TV (pvo) =0 (18-51)
If we let /; = m;v; and sum over i, Eq. (18-49) becomes (Problem 18-12)
Dy,
p,,,E—JZp,-X,—V-p (18-52)

where p is the pressure tensor defined in Eq. (18-26). Similarly, if we let , = Im;v?
_for example, we get the energy balance equation, Eq. (17-31). (See Problem 18-1 3'.)112
Is reassuring, although not surprising, that these equations should come out of the

Bolt.zrnann eq}lation. .The next general consequence we shall derive is not particularly
obvious and, in fact, is a rather profound result.

Next we discuss the so-called Boltzmann H-theorem and the equilibrium solution
to the Boltzmann equation. Consider a one-component system. The Boltzmann

H-function is defined by

H(t) = f f F, v, O Inf, v, ) dr dv (18-53)
Differentiate H{(r) with respect to t:

dH of of

dt—ﬂa—tlnfdldv+ﬂadrdv | (18-54)
The second term here vanishes since

ff%drdv=g—t ffdrdv:ii_]:f[=

if the number of particles in the system is conserved. Equation (18-54) becomes then

dH  rof
== Halnfdr dv (18-55)

0

To evaluate this integral, multiply the Boltzmann equatio i
, n by In d
dr and dv. This gives ! yin/and integrate over

ffaa—{ Infdrdv = —H (Inf)v -V, fdr dv — ff(lnf) ;2 -V, fdr dv
+2n [[[mfirsy —frygbdbavay,  (18-s6)
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The subscript 1 in the collision integral here is to distinguish the two colliding mole-
cules. The first two integrals on the right vanish since we assume as always that f
vanishes at the walls of the container and as v — + oo (Problem 18-14). This leaves

d
—g =2n [[[mrir =41 3gb db dv v, (18-57)

This integral may be symmetrized by the same method we used to derive Eq. (18-48) to
give (Problem 18-15)

dH 2=n ViR

=7 f”ln{f,fl,}{ffl — ffi}gb db dv dv, (18-58)
Now this integrand is of the form —(x — y) In(x/y). If x > y, this function is negative;
if x < y, it is also negative; and if x = y, it is equal to zero. Therefore, we get the result
that

H o (18-59)
dt — ‘

The definition of H(f) shows that it is bounded, and hence H(f) must approach a

limit as  — co. In this limit, dH/dt = 0, and so we have an equilibrium or steady-state

situation with

i = (18-60)

or
Inf/+Infi’=hf+Inf (18-61)
This tells us that In f is a summational invariant. However, we know that the only

summational invariants of bimolecular collisions of spherically symmetric molecules
are the mass, the momentum, and the kinetic energy. Therefore, In f must be a linear

combination of these three quantities, or

2 . 2
lnf=ozm+[i-(mv)—y’—7g)—=ocm+’§%—ﬁ—%z(v—%) (18-62)
If we let am -+ mp * B/2y be In ¢, then
2
1nf=1nc—l§—)(v—g)
or
2
fl,v)=c exp[— i_nz_y (v - %) ] (18-63)

Notice how closely this resembles a Maxwellian distribution. We can determine our
unknown parameters ¢, B, and y from the following conditions. First, we have

B B my B\*
o, 1) = ffdv—cfexp[—T (v——y) ] dv (18-64)
Evaluating the integral in Eq. (18-64) gives (Problem 13-16)
2m\ 12
, )= — 18-65
Pl =c (my) ‘ ( !
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Similarly, we have (Problem 18-16)

-1 p
Vo=V =— d = -
o P Jvf v » (18-66)
Lastly, we define temperature by the usual relation

3T = %n (v — vo)?

which gives (Problem 18-16)

3T = 3y~ 1 (18-67)
Equations (18-65), (18-66), and (18-67) then give
m 3/2
T, V) = -mV2/2kT
S, v)=p (Z—HkT) e (18-68)

which is the classical expression for the Maxwellian distribution of velocities. Since
aI.ld .T can be functions of position here, this is more generally a local Ma;xwelliaﬁ
d1§tr1bution. This might be the distribution in a steady state rather than at equili-
brium. We see then that the equilibrium solution to the Boltzmann equation is indeed
the Maxwellian distribution, another reassuring, but nevertheless necessary, result

The r.eally interesting consequence of the Boltzmann equation is the H’-theore‘m
whose significance we have glossed over. The H-theorem attributes a direction in time’
t(? tbe Boltzmann equation since it states that if we start out with some arbitrar
d¥strfbution function, it will relax to the equilibrium (or steady-state) Maxwelliar};
dxstrlbgtion. Of course, one can say that this is a necessary feature of any equation
we derive to describe a gas since we know from the second law of thermodynamics
that systems tend toward their equilibrium states. But the fact that it comes out of the
Boltzmann equation was at first severely attacked for the following reasons

The equations of motion of classical mechanics, .

2
X,
m dfzJ = _gradj U(rla vees i‘N) 1 <J<N (18-69)

are symmetrical in time. If we let t - —¢ in Eq (18-69), one gets the same equations
‘bacl.c again. This means that classical mechanical systems have no preferred direction
in t1mf>; motion in one direction is no more preferred than motion in the opposite
direction. On the other hand, the H-theorem shows that the Boltzmann equation does
have a preferred direction. From a purely mechanical point of view, if all the molecules
move in such a way to make H decrease, there is at least a possible mechanical motion
where everything is reversed, and if everything is reversed, H must increase. This is
part of the more general question of how the irreversible processes that we ol:;serve in
naturt_a can be reconciled with the basic reversibility of the underlying mechanical
eql.latlf)ns of motion. The H-theorem is a particular expression of this situation. This
objection was first raised by Loschmidt. Boltzmann tried to answer this by claimin

that Egs. (18-31) and (18-35) should be interpreted as the probability of a COlliSiO‘[gl
rather than the actual number of collisions, and this means that H(f) does, indeed
pot always decrease, but that the probability that it decrease is far greate; than i;
increase. The further the system is from equilibrium, the more likely & (f) is to decrease
Boltzmann’s arguments were not convincing to all of his critics, and it was left to.
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the Ehrenfests and Smoluchowski some years later to clearly explain the statistical
nature of the Boltzmann equation. They were able to show that on the average, the
H-function decreases with time to its equilibrium value, but'that ﬂl.lctuatl.o?ls can
and will always occur, Furthermore, H will almost always remain near 1_ts eq}nhbrlum
value once it gets there. We have encountered a somewhat snln'llar. situation when
we discussed entropy in Chapter 2. Notice, in fact, that the equlh.bru.nn. value of the ,
H-function is equal to — S/k for an ideal gas. A decreasing H-function is in some sense
an increasing entropy. The H-function can actually be computeq as a functmnI of
time by molecular dynamics. In fact, one of the most powerf}ll and mterestlr}g applica-
tions of molecular dynamics calculations is to nonequilil?rlum syst.ems. F}gure 12'3—3
shows H(t) calculated by Alder and Wainwright in their pioneering review article
(in “Additional Reading™).

If the objection by Loschmidt were not enough, there was also anotber paradox
pointed out by Zermelo. This one was at the time more awkward than the tlme-reversa}l
paradox. There is a general theorem in classical mechanics .that says that any .mechanl—
cal system enclosed in a finite volume will return arbitrarily close; to 1'ts original state. .
This theorem is called the Poincaré recursion theorem, and the time it take§ to essen-
tially return to its original state is called the recurrence time. Such a gycle is callegi a
Poincaré cycle. Zermelo vehemently pointed out that the H-theorem is at oc?d.s vyxth
the Poincaré recursion theorem, since how could H evolve toward an equilibrium
value and remain there when classical mechanics dictates that the system rr‘xus.t even-
tually retrace itself. Boltzmann was able to meet this objec':tion as weu py pointing out
that for physically interesting systems, the recurrence tl'mes are 1r81<ilculously largf:.

For example, Boltzmann estimated that a system consisting of 10*° atoms per cut?lc
centimeter with an average velocity of 5 x 10* cm/sec would reproduce all of its :

800 -
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| | 1 { { I | Il
5000 ! 2 3 4 5 6 7 8 9 10 \

100C 200C

{ i i - i hard-sphere system of
Figure 18-3, A molecular dynamics calculation of the Boltzmann /- ﬁfncu.on for a iy
e 100 particles at a density v/v, = 14.14, The H-function is plotted versus -the COI.IIS.IOH
number C., (From B, J. Alder and T, Wainwright, in Transport Processes in Statistical
Mechanics, 1. Prigogine, ed., New York: Interscience, 1958.)
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coordinates within 10”7 cm and all of its velocities to within 100 cm/sec in a time of the
order of 10'°" years!

The scientific atmosphere of the time, however, was such that Boltzmann was not
able to convince all of his critics, and it was finally Smoluchowski who clearly stated
that the very concept of irreversibility is intimately involved with the length of the
recurrence time. If one is initially in a state with a very long recurrence time, the
process will appear to be irreversible. On the other hand, if the recurrence time is short,
one does not speak about irreversibility. For any sensible physical system, the Poincaré
recurrence times are extremely long.

The above results lead to the following picture of phase space. The overwhelming
majority of phase space describes an equilibrium situation. Scattered throughout phase
space are small regions that describe certain nonequilibrium configurations. Almost
all of these nonequilibrium regions are completely surrounded by equilibrium regions,
so that if we do happen to observe a system in a nonequilibrium state, it is almost
always headed toward an equilibrium state. Once it reaches equilibrium, it will travel
through various equilibrium states, only occasionally, rarely passing through other
little regions of nonequilibrium. Such events are what we observe as fluctuations,
This is so regardless of whether the phase point travels in a forward or backward
direction, and so this picture is consistent with the classical mechanical requirement
of time reversibility. Furthermore, the phase point must make its complete circuit
through phase space before passing near its original position (since trajectories in
phase space never cross). This length of time is the recurrence time. This would simply
be observed as another fluctuation from equilibrium.

These little nonequilibrium regions in phase space vary in extent. The smaller the
region, the less time the system spends away from equilibrium. It is conceivable,
however, that some nonequilibrium region of phase space is such that a phase point
can be trapped there. For example, consider a gas prepared such that the velocities of
all of its molecules are parallel to each other and perpendicular to the walls of the
container. If we assume that the walls are perfectly smooth, the molecules would then
travel back and forth between the walls, remain parallel to each other, and hence
never collide and come to equilibrium. The phase point describing this gas would be
confined to some peculiar region of phase space and get hung up there. Clearly
the H-theorem and the Boltzmann equation itself would not be applicable to such a
pathological system. The Boltzmann equation tacitly requires that the system be
sufficiently chaotic. This leaves open the question of how to decide when a system can
be described by the Boltzmann equation (or statistical mechanics for that matter). All
that can be safely said is that such a difficulty never seems to arise in practice. In our
pathological system above, for example, any slight imperfection or roughness in the
walls of the container would send the molecules off their parallel paths, and the system
would become sufficiently chaotic in just a few series of collisions.

There are many long discussions about irreversibility, classical or quantum mechan-
ics, and statistical mechanics in the literature, and the reader is referred to Tolman,
Mazo, Huang, Uhlenbeck and Ford, and ter Haar for further discussions. (See
“Additional Reading.”)

It is interesting to note that Boltzmann (1844-1906) did his pioneering work at a
time when atomic theories were not generally accepted. There were essentially two
schools of scientific philosophy at that time: the atomists, led by Boltzmann himself,
and the school of energeticists, led by Mach, Ostwald, Duhem, and others. Remember
that this was a prequantum mechanical time, and the inadequacies of classical
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mechanics were becoming increasingly evident. For example, Boltzmann was never to
understand why the internal degrees of freedom of molecules could not be successfully
treated by classical mechanics. The extent of the controversy can be well summarized
in Boltzmann’s foreword to Part II of his great work, Lectures on Gas Theory. He
says, “‘As the first part of Gas Theory was being printed, I had already almost com-
pleted the present second and last part, in which the more difficult parts of the subject
were to have been treated. It was just at this time that attacks on the theory of gases
began to increase. I am convinced that these attacks are merely based on a misunder-
standing, and that the role of gas theory in science has not yet been played out. . . .

“In my opinion it would be a great tragedy for science if the theory of gases were
temporarily thrown into oblivion because of a momentary hostile attitude toward it,
as was for example the wave theory because of Newton’s authority.

“T am conscious of being only an individual struggling weakly against the stream of
time. But it still remains in my power to contribute in such a way that, when the theory
of gases is again revived, not too much will have to be rediscovered. Thus in this book
[this Part] I will now include the parts that are the most difficult and most subject to
misunderstanding and give (at least in outline) the most easily understood exposition
of them. . . .”’ Boltzmann was clearly pessimistic about the future of the kinetic theory.
This led to severe fits of depression, ending with his suicide in 1906.

The Boltzmann equation is accepted today as giving a completely adequate des-
cription of the behavior of dilute gases. In the next chapter we shall study some of the
numerical results of the Boltzmann equation.
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PROBLEMS
18-1. Why is the operator exp(—iL¢) called the time displacement operator ?
18-2 Derive Eq. (18-13).
18-3. Derive the BBGKY hierarchy for the reduced distribution function f®.
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18-4. Derive the Born-Green-Yvon-Kirkwood hierachy for the equilibrium #-particle

correlation function ¢ (ry, r, ..., r,), Eq. (13-39), from the BBGKY hierachy for
Sy, .o, po, 1y, .., 1), B, (18-14).

18-5. Why is the average of the peculiar velocit 11
(18-20)]? ity called the diffusion velocity [cf. Eq.

18-6. Prove that
2 pytmy \71 =

18-7, Calculate both p and q given that f(r, v, 1) is a local Maxwell distribution

312 mlv — vo(r, H)]?
reot0|srtes] oo "
18-8. Derive Eq. (18-30).
18-9. Show that Eq. (18-42) is equal to Eq. (18-43).
18-10. Prove Eq. (18-46).
18-11. Prove Eq. (18-48).
18-12, Derive the momentum balance equation, Eq. (18-52), from Eq. (18-49).
18-13. Derive the energy balance equation from Eq. (18-49).
18-14. Show that the first two integrals on the right-hand side of Eq. (18-56) vanish.
18-15. Derive Eq. (18-58).

18-16, Prove t.hat the Boltzmann H-theorem implies that the steady-state solution to the
Boltzmann equation is a local Maxwellian distribution, i.e., prove Egs. (18-65), (18-66)
and (18-67). '

18—1‘7.IShow that if a local Maxwellian distribution is used to calculate the averages in
the equations of change, Egs. (18~51) and (18-52), one gets the ideal hydrodynamicequations.

18-18. The collision term in the Boltzmann equation is often written approximately as

o U=
61‘ collisions T T

w.hel:e Jo is a local Maxwellian distribution. Show that this implies that the difference of the
distribution function from equilibrium decays as a simple exponential due to collisions.
Interpret . Give an estimate of its magnitude. Should = depend upon the velocity v?

The standard method of solution to the Boltzmann equation, called the Chapman-Enskog
method, is fairly long and involved. It is possible, however, to present an illuminating preview
of the method by solving a simplified form of the Boltzmann equation in which the collision

term is approximated by —(f— fo)/r. This will be discussed in Problems 18-19 through
18-21.

18-19. We start with the approximate form of the Boltzmann equation (cf. Problem 18-18)

R e/

where the relaxation time = may depend upon v and f; is a local Maxwellian distribution.
We assume that the deviation of f'from fo is linear in the velocity gradient and the tempera-
ture gradient. Show that under this assumption we can replace f by f, in the left-hand side
of the equation to get

oo S

5 TV Vo= AL
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