
III.C The Bogoliubov-Born-Green-Kirkwood-Yvon Hierarchy

The full phase space density contains much more information than necessary for de-

scription of equilibrium properties. For example, knowledge of the one particle distribution

is sufficient for computing the pressure of a gas. A one particle density refers to the ex-

pectation value of finding any of the N particles at location !q, with momentum !p, at time

t, which is computed from the full density ρ as

f1(!p, !q, t) =

〈

N
∑

i=1

δ3(!p − !pi)δ
3(!q − !qi)

〉

=N

∫ N
∏

i=2

d3!pid
3!qiρ(!p1 = !p, !q1 = !q, !p2, !q2, · · · , !pN , !qN , t).

(III.16)

To obtain the second identity above, we used the first pair of delta functions to perform one

set of integrals, and then assumed that the density is symmetric with respect to permuting

the particles. Similarly, a two particle density can be computed from

f2(!p1, !q1, !p2, !q2, t) = N(N − 1)

∫ N
∏

i=3

dVi ρ(!p1, !q1, !p2, !q2, · · · , !pN , !qN , t), (III.17)

where dVi = d3!pid3!qi is the contribution of particle i to phase space volume. The general

s-particle density is defined by

fs(!p1, · · · , !qs, t) =
N !

(N − s)!

∫ N
∏

i=s+1

dVi ρ(p,q, t) =
N !

(N − s)!
ρs(!p1, · · · , !qs, t), (III.18)

where ρs is a standard unconditional PDF for the coordinates of s particles, and ρN ≡ ρ.

While ρs is properly normalized to unity when integrated over all its variables, the s-

particle density has a normalization of N !/(N − s)!. We shall use the two quantities

interchangeably.

The evolution of the few-body densities is governed by the BBGKY hierarchy of

equations attributed to Bogoliubov, Born, Green, Kirkwood, and Yvon. The simplest

non-trivial Hamiltonian studied in kinetic theory is

H(p,q) =
N
∑

i=1

[

!pi
2

2m
+ U(!qi)

]

+
1

2

N
∑

(i,j)=1

V(!qi − !qj). (III.19)

This Hamiltonian provides an adequate description of a weakly interacting gas. In addition

to the classical kinetic energy of particles of mass m, it contains an external potential

47



U , and a two-body interaction V, between the particles. In principle, three and higher

body interactions should also be included for a realistic description, but they are not very

important in the dilute gas (nearly ideal) limit.

For evaluating the time evolution of fs, it is convenient to divide the Hamiltonian into

H = Hs + HN−s + H′, (III.20)

where Hs and HN−s include only interactions among each group of particles,

Hs =
s
∑

n=1

[

!pn
2

2m
+ U(!qn)

]

+
1

2

s
∑

(n,m)=1

V(!qn − !qm),

HN−s =
N
∑

i=s+1

[

!pi
2

2m
+ U(!qi)

]

+
1

2

N
∑

(i,j)=s+1

V(!qi − !qj),

(III.21)

while the interparticle interactions are contained in

H′ =
s
∑

n=1

N
∑

i=s+1

V(!qn − !qi). (III.22)

From eq.(III.18), the time evolution of fs (or ρs) is obtained as

∂ρs

∂t
=

∫ N
∏

i=s+1

dVi
∂ρ

∂t
= −

∫ N
∏

i=s+1

dVi {ρ,Hs + HN−s + H′}, (III.23)

where eq.(III.9) is used for the evolution of ρ. The three Poisson brackets in eq.(III.23)

will now be evaluated in turn. Since the first s coordinates are not integrated, the order

of integrations and differentiations for the Poisson bracket may be reversed, and

∫ N
∏

i=s+1

dVi {ρ,Hs} = {

(

∫ N
∏

i=s+1

dVi ρ

)

,Hs} = {ρs,Hs}. (III.24)

Writing the Poisson brackets explicitly, the second term of eq.(III.23) takes the form

−
∫ N

∏

i=s+1

dVi {ρ,HN−s} =

∫ N
∏

i=s+1

dVi

N
∑

j=1

[

∂ρ

∂!pj

·
∂HN−s

∂!qj

−
∂ρ

∂!qj

·
∂HN−s

∂!pj

]

(using eq.(III.21))

=

∫ N
∏

i=s+1

dVi

N
∑

j=s+1

[

∂ρ

∂!pj
·

(

∂U

∂!qj
+

1

2

N
∑

k=s+1

∂V(!qj − !qk)

∂!qj

)

−
∂ρ

∂!qj
·
!pj

m

]

= 0. (III.25)
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The last equality is obtained after performing the integrations by part: The term multi-

plying ∂ρ/∂!pj has no dependence on !pj , while !pj/m does not depend on !qj . The final term

in eq.(III.23), involving the Poisson bracket with H′, is
∫ N

∏

i=s+1

dVi

N
∑

j=1

[

∂ρ

∂!pj

·
∂H′

∂!qj

−
∂ρ

∂!qj

·
∂H′

∂!pj

]

=

∫ N
∏

i=s+1

dVi





s
∑

n=1

∂ρ

∂!pn
·

N
∑

j=s+1

∂V(!qn − !qj)

∂!qn
+

N
∑

j=s+1

∂ρ

∂!pj
·

s
∑

n=1

∂V(!qj − !qn)

∂!qj



 ,

where the sum over all particles has been subdivided into the two groups. (Note that H′

in eq.(III.22) has no dependence on the momenta.) Integration by parts shows that the

second term in the above expression is zero. The first term involves the sum of (N − s)

expressions that are equal by symmetry and simplifies to

(N − s)

∫ N
∏

i=s+1

dVi

s
∑

n=1

∂V(!qn − !qs+1)

∂!qn

·
∂ρ

∂!pn

=(N − s)
s
∑

n=1

∫

dVs+1
∂V(!qn − !qs+1)

∂!qn
·

∂

∂!pn

[

∫ N
∏

i=s+2

dVi ρ

]

.

(III.26)

Note that the quantity in the above square brackets is ρs+1. Thus, adding up eqs.(III.24),

(III.25), and (III.26),

∂ρs

∂t
− {Hs, ρs} = (N − s)

s
∑

n=1

∫

dVs+1
∂V(!qn − !qs+1)

∂!qn
·
∂ρs+1

∂!pn
, (III.27)

or in terms of the densities fs,

∂fs

∂t
− {Hs, fs} =

s
∑

n=1

∫

dVs+1
∂V(!qn − !qs+1)

∂!qn
·
∂fs+1

∂!pn
. (III.28)

In the absence of interactions with other particles, the density ρs for a group of

s particles evolves as the density of an incompressible fluid (as required by Liouville’s

theorem), and is described by the streaming terms on the left hand side of eq.(III.27).

However, because of interactions with the remaining N − s particles, the flow is modified

by the collision terms on the right hand side. The collision integral is the sum of the terms

corresponding to a potential collision of any of the particles in the group of s, with any

of the remaining N − s particles. To describe the probability of finding the additional

particle that collides with a member of this group, the result must depend on the joint

PDF of s+1 particles described by ρs+1. This results in a hierarchy of equations in which

∂ρ1/∂t depends on ρ2, ∂ρ2/∂t depends on ρ3, etc., which is at least as complicated as

the original equation for the full phase space density. To proceed further, a physically

motivated approximation for terminating the hierarchy is needed.
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III.D The Boltzmann Equation

To estimate the relative importance of the different terms appearing in eqs.(III.28),

let us examine the first two equations in the hierarchy,

[

∂

∂t
−

∂U

∂!q1
·

∂

∂!p1
+

!p1

m
·

∂

∂!q1

]

f1 =

∫

dV2
∂V(!q1 − !q2)

∂!q1
·
∂f2

∂!p1
, (III.29)

and
[

∂

∂t
−

∂U

∂!q1
·

∂

∂!p1
−

∂U

∂!q2
·

∂

∂!p2
+

!p1

m
·

∂

∂!q1
+

!p2

m
·

∂

∂!q2
−

∂V(!q1 − !q2)

∂!q1
·

(

∂

∂!p1
−

∂

∂!p2

)]

f2 =

∫

dV3

[

∂V(!q1 − !q3)

∂!q1
·

∂

∂!p1
+

∂V(!q2 − !q3)

∂!q2
·

∂

∂!p2

]

f3 .

(III.30)

Note that two of the streaming terms in eq.(III.30) have been combined by using

∂V(!q1 − !q2)/∂!q1= −∂V(!q2 − !q1)/∂!q2, which is valid for a symmetric potential such that

V(!q1 − !q2)= V(!q2 − !q1).

• Time scales: All terms within square brackets in the above equations have dimensions

of inverse time, and we estimate their relative magnitudes by dimensional analysis, using

typical velocities and length scales. The typical speed of a gas particle at room temperature

is v ≈ 102ms−1. For terms involving the external potential U , or the inter-atomic potential

V, an appropriate length scale can be extracted from the range of variations of the potential.

(a) The terms proportional to
1

τU

∼
∂U

∂!q
·

∂

∂!p
,

involve spatial variations of the external potential U(!q ), which take place over macro-

scopic distances L. We shall refer to the associated time τU , as an extrinsic time scale,

as it can be made arbitrarily long by increasing system size. For a typical value of

L ≈ 10−3m, we get τU ≈ L/v ≈ 10−5s.

(b) From the terms involving the inter-atomic potential V, we can extract two additional

time scales, which are intrinsic to the gas under study. In particular, the collision

duration
1

τc
∼

∂V

∂!q
·

∂

∂!p
,

is the typical time over which two particles are within the effective range d, of their

interaction. For short range interactions (including van der Waals and Lenard–Jones,

despite their power law decaying tails), d ≈ 10−10m is of the order of a typical atomic

size, resulting in τc ≈ 10−12s. This is usually the shortest time scale in the problem.
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The analysis is somewhat more complicated for long range interactions, such as the

Coulomb gas in a plasma. For a neutral plasma, the Debye screening length λ replaces

d in the above equation, as discussed in the problems.

(c) There are also collision terms on the right hand side of eqs.(III.28), which depend on

fs+1, and lead to an inverse time scale

1

τ×
∼

∫

dV
∂V

∂!q
·

∂

∂!p

fs+1

fs
∼

∫

dV
∂V

∂!q
·

∂

∂!p
N

ρs+1

ρs
.

The integrals are only non-zero over the volume of the inter-particle potential d3. The

term fs+1/fs is related to the probability of finding another particle per unit volume,

which is roughly the particle density n = N/V ≈ 1026m−3. We thus obtain the mean

free time

τ× ≈
τc

nd3
≈

1

nvd2
, (III.31)

which is the typical distance a particle travels between collisions. For short range

interactions, τ× ≈ 10−8s is much longer than τc, and the collision terms on the right

hand side of eqs.(III.28) are smaller by a factor of nd3 ≈ (1026m−3)(10−10m)3 ≈ 10−4.

The Boltzmann equation is obtained for short range interactions in the dilute regime by

exploiting τc/τ× ≈ nd3 % 1. (By contrast, for long range interactions such that nd3 & 1,

the Vlasov equation is obtained by dropping the collision terms on the left hand side, as

discussed in the problems.) From the above discussion, it is apparent that eq.(III.29) is

different from the rest of the hierarchy: It is the only one in which the collision terms are

absent from the left hand side. For all other equations, the right hand side is smaller by

a factor of nd3, while in eq.(III.29) it may indeed dominate the left hand side. Thus a

possible approximation scheme is to truncate the equations after the first two, by setting

the right hand side of eq.(III.30) to zero.

Setting the right hand side of the equation for f2 to zero implies that the two body

density evolves as in an isolated two-particle system. The relatively simple mechanical

processes that govern this evolution result in streaming terms for f2 which are proportional

to both τ−1
U and τ−1

c . The two sets of terms can be more or less treated independently:

the former describe the evolution of the center of mass of the two particles, while the latter

govern the dependence on relative coordinates.
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The density f2 is proportional to the joint PDF ρ2 for finding one particle at (!p1, !q1),

and another at (!p2, !q2), at the same time t. It is reasonable to expect that at distances

much larger than the range of the potential V, the particles are independent, i.e.

{

ρ2(!p1, !q1, !p2, !q2, t) −→ ρ1(!p1, !q1, t)ρ1(!p2, !q2, t), or

f2(!p1, !q1, !p2, !q2, t) −→ f1(!p1, !q1, t)f1(!p2, !q2, t), for |!q2 − !q1| & d.
(III.32)

The above statement should be true even for situations out of equilibrium. For example,

imagine that the gas particles in a chamber are suddenly allowed to invade an empty volume

after the removal of a barrier. The density f1 will undergo a complicated evolution, and

its relaxation time will be at least comparable to τU . The two particle density f2, will also

reach its final value at a comparable time interval. However, it is expected to relax to a

form similar to eq.(III.32) over a much shorter time of the order of τc.

For the collision term on the right hand side of eq.(III.29), we actually need the precise

dependence of f2 on the relative coordinates and momenta at separations comparable to d.

At time intervals longer than τc (but possibly shorter than τU ), the ‘steady state’ behavior

of f2 at small relative distances is obtained by equating the largest streaming terms in

eq.(III.30), i.e.

[

!p1

m
·

∂

∂!q1
+

!p2

m
·

∂

∂!q2
−

∂V(!q1 − !q2)

∂!q1
·

(

∂

∂!p1
−

∂

∂!p2

)]

f2 = 0. (III.33)

We expect f2(!q1, !q2) to have slow variations over the center of mass coordinate !Q = (!q1 +

!q2)/2, and large variations over the relative coordinate !q = !q2 − !q1. Therefore, ∂f2/∂!q &

∂f2/∂ !Q, and ∂f2/!q2 ≈ −∂f2/∂!q1 ≈ ∂f2/∂!q, leading to

∂V(!q1 − !q2)

∂!q1
·

(

∂

∂!p1
−

∂

∂!p2

)

f2 = −

(

!p1 − !p2

m

)

·
∂

∂!q
f2 . (III.34)

The above equation provides a precise mathematical expression for how f2 is constrained

along the trajectories that describe the collision of the two particles.

The collision term on the right hand side of eq.(III.29) can now be written as

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3!p2d
3!q2

∂V(!q1 − !q2)

∂!q1
·

(

∂

∂!p1
−

∂

∂!p2

)

f2

≈
∫

d3!p2d
3!q

(

!p2 − !p1

m

)

·
∂

∂!q
f2 (!p1, !q1, !p2, !q ; t) .

(III.35)
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The first identity if obtained from eq.(III.29) by noting that the added term proportional

to ∂f2/∂!p2 is a complete derivative and integrates to zero, while the second equality follows

from eq.(III.34), after the change of variables to !q = !q2−!q1. (Since it relies on establishing

the ‘steady state’ in the relative coordinates, this approximation is valid as long as we

examine events in time with a resolution longer than τc.)

• Kinematics of collision and scattering: The integrand in eq.(III.35) is a derivative of

f2 with respect to !q along the direction of relative motion !p = !p2 − !p1, of the colliding

particles. To perform this integration we introduce a convenient coordinate system for !q,

guided by the formalism used to describe the scattering of particles. Naturally, we choose

one axis to be parallel to !p2 − !p1, with the corresponding coordinate a which is negative

before a collision, and positive afterwards. The other two coordinates of !q are represented

by an impact vector !b which is !0 for a head–on collision ([!p1 − !p2] ‖ [!q1 − !q2]). We can now

integrate over a to get

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3!p2 d2!b |!v1 − !v2|
[

f2(!p1, !q1, !p2,!b, +; t) − f2(!p1, !q1, !p2,!b,−; t)
]

, (III.36)

where |!v1 − !v2| = |!p1 − !p2|/m is the relative speed of the two particles, with (!b,−) and

(!b, +) referring to relative coordinates before and after the collision. Note that d2!b |!v1−!v2|

is just the flux of particles impinging on the element of area d2!b.

In principle, the integration over a is from −∞ to +∞, but as the variations of f2

are only significant over the interaction range d, we can evaluate the above quantities

at separations of a few d from the collision point. This is a good compromise, allowing

us to evaluate f2 away from the collisions, but at small enough separations so that we

can ignore the difference between !q1 and !q2. This amounts to a coarse-graining in space

which eliminates variations on scales finer than d. With these provisos, it is tempting to

close the equation for f1, by using the assumption of uncorrelated particles in eq.(III.32).

Clearly some care is necessary as a naive substitution gives zero! The key observation is

that the densities f2 for situations corresponding to before and after the collision have to

be treated differently. For example, soon after opening of the slot separating empty and

full gas containers, the momenta of the gas particles are likely to point away from the

slot. Collisions will tend to randomize momenta, yielding a more isotropic distribution.

However, the densities f2 before and after the collision are related by streaming, implying

that f2(!p1, !q1, !p2,!b, +; t) = f2(!p1
′, !q1, !p2

′,!b,−; t), where !p1
′ and !p2

′ are momenta whose

collision at an impact vector !b results in production of outgoing particles with momenta !p1
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and !p2. They can be obtained using time reversal symmetry, by integrating the equations

of motion for incoming colliding particles of momenta −!p1 and −!p2. In terms of these

momenta, we can write

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3!p2 d2!b |!v1 − !v2|
[

f2(!p1
′, !q1, !p2

′,!b,−; t) − f2(!p1, !q1, !p2,!b,−; t)
]

. (III.37)

It is sometimes more convenient to describe the scattering of two particles in terms of

the relative momenta !p = !p1 − !p2 and !p ′ = !p1
′ − !p2

′, before and after the collision. For a

given !b, the initial momentum !p is deterministically transformed to the final momentum

!p ′. To find the functional form !p ′(|!p |,!b ), one must integrate the equations of motion.

However, it is possible to make some general statements based on conservation laws: In

elastic collisions, the magnitude of !p is preserved, and it merely rotates to a final direction

indicated by the angles (θ, φ) ≡ Ω̂(!b ) (a unit vector) in spherical coordinates. Since there

is a one to one correspondence between the impact vector !b, and the solid angle Ω, we

make a change of variables between the two, resulting in

df1

dt

∣

∣

∣

∣

coll.

=

∫

d3!p2d
2Ω

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

|!v1 − !v2|
[

f2(!p1
′, !q1, !p2

′,!b,−; t) − f2(!p1, !q1, !p2,!b,−; t)
]

.

(III.38)

The Jacobian of this transformation, |dσ/dΩ|, has dimensions of area, and is known as

the differential cross-section. It is equal to the area presented to an incoming beam which

scatters into the solid angle Ω. The out-going momenta !p1
′ and !p2

′ in eq.(III.38) are now

obtained from the two conditions !p1
′ + !p2

′ = !p1 + !p2 (conservation of momentum), and

!p1
′ − !p2

′ = |!p1 − !p2|Ω̂(!b ) (conservation of energy), as











!p1
′ =
(

!p1 + !p2 + |!p1 − !p2|Ω̂(!b )
)

/2,

!p2
′ =
(

!p1 + !p2 − |!p1 − !p2|Ω̂(!b )
)

/2.
(III.39)

For the scattering of two hard spheres of diameter D, it is easy to show that the

scattering angle is related to the impact parameter b by cos(θ/2) = b/D for all φ. The

differential cross-section is then obtained from

d2σ = b db dφ = D cos

(

θ

2

)

D sin

(

θ

2

)

dθ

2
dφ =

D2

4
sin θdθ dφ =

D2

4
d2Ω.

(Note that the solid angle in three dimensions is given by d2Ω = sin θdθ dφ.) Integrating

over all angles leads to the total cross–section of σ = πD2, which is evidently correct. The

54



differential cross-section for hard spheres is independent of both θ and | !P |. This is not the

case for soft potentials. For example, the Coulomb potential V = e2/| !Q| leads to

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

=

(

me2

2| !P |2 sin2(θ/2)

)2

.

(The dependence on | !P | can be justified by obtaining a distance of closest approach from

| !P |2/m + e2/b ≈ 0.)

• The Boltzmann equation is obtained from eq.(III.38) after the substitution

f2(!p1, !q1, !p2,!b,−; t) = f1(!p1, !q1, t) · f1(!p2, !q1, t), (III.40)

known as the assumption of molecular chaos. Note that even if one starts with an uncor-

related initial probability distribution for particles, there is no guarantee that correlations

are not generated as a result of collisions. The final result is the following closed form

equation for f1

[

∂

∂t
−

∂U

∂!q1
·

∂

∂!p1
+

!p1

m
·

∂

∂!q1

]

f1 =

−
∫

d3!p2d
2Ω

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

|!v1 − !v2| [f1(!p1, !q1, t)f1(!p2, !q1, t) − f1(!p1
′, !q1, t)f1(!p2

′, !q1, t)] .

(III.41)

Given the complexity of the above ‘derivation’ of the Boltzmann equation, it is appro-

priate to provide a heuristic explanation. The streaming terms on the left hand side of the

equation describe the motion of a single particle in the external potential U . The collision

terms on the right hand side have a simple physical interpretation: The probability of

finding a particle of momentum !p1 at !q1 is suddenly altered if it undergoes a collision with

another particle of momentum !p2. The probability of such a collision is the product of

kinematic factors described by the differential cross-section |dσ/dΩ|, the ‘flux’ of incident

particles proportional to |!v2−!v1|, and the joint probability of finding the two particles, ap-

proximated by f1(!p1)f1(!p2). The first term on the right hand side of eq.(III.41) subtracts

this probability and integrates over all possible momenta and solid angles describing the

collision. The second term represents an addition to the probability which results from the

inverse process: A particle can suddenly appear with coordinates (!p1, !q1) as a result of a

collision between two particles initially with momenta !p1
′ and !p2

′. The cross-section, and

the momenta (!p1
′, !p2

′) may have a complicated dependence on (!p1, !p2) and Ω, determined

by the specific form of the potential V . Remarkably, various equilibrium properties of the

gas are quite independent of this potential.
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