
2. Kinetic Theory

The purpose of this section is to lay down the foundations of kinetic theory, starting

from the Hamiltonian description of 1023 particles, and ending with the Navier-Stokes
equation of fluid dynamics. Our main tool in this task will be the Boltzmann equation.
This will allow us to provide derivations of the transport properties that we sketched in

the previous section, but without the more egregious inconsistencies that crept into our
previous derivaion. But, perhaps more importantly, the Boltzmann equation will also

shed light on the deep issue of how irreversibility arises from time-reversible classical
mechanics.

2.1 From Liouville to BBGKY

Our starting point is simply the Hamiltonian dynamics for N identical point particles.

Of course, as usual in statistical mechanics, here is N ridiculously large: N ∼ O(1023)
or something similar. We will take the Hamiltonian to be of the form

H =
1

2m

N
∑

i=1

!p 2
i +

N
∑

i=1

V (!ri) +
∑

i<j

U(!ri − !rj) (2.1)

The Hamiltonian contains an external force !F = −∇V that acts equally on all parti-
cles. There are also two-body interactions between particles, captured by the potential
energy U(!ri − !rj). At some point in our analysis (around Section 2.2.3) we will need

to assume that this potential is short-ranged, meaning that U(r) ≈ 0 for r % d where,
as in the last Section, d is the atomic distance scale.

Hamilton’s equations are

∂!pi
∂t

= −
∂H

∂!ri
,

∂!ri
∂t

=
∂H

∂!pi
(2.2)

Our interest in this section will be in the evolution of a probability distribution,

f(!ri, !pi; t) over the 2N dimensional phase space. This function tells us the proba-
bility that the system will be found in the vicinity of the point (!ri, !pi). As with all
probabilities, the function is normalized as

∫

dV f(!ri, !pi; t) = 1 with dV =
N
∏

i=1

d3rid
3pi

Furthermore, because probability is locally conserved, it must obey a continuity equa-
tion: any change of probability in one part of phase space must be compensated by
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a flow into neighbouring regions. But now we’re thinking in terms of phase space,
the “∇” term in the continuity equation includes both ∂/∂!ri and ∂/∂!pi and, corre-

spondingly, the velocity vector in phase space is (!̇ri, !̇pi). The continuity equation of the
probability distribution is then

∂f

∂t
+

∂

∂!ri
·
(

!̇rif
)

+
∂

∂!pi
·
(

!̇pif
)

= 0

But, using Hamilton’s equations (2.2), this becomes

∂f

∂t
+

∂

∂!ri
·

(

∂H

∂!pi
f

)

−
∂

∂!pi
·

(

∂H

∂!ri
f

)

= 0

⇒
∂f

∂t
+

N
∑

i=1

∂f

∂!ri
·
∂H

∂!pi
−

∂f

∂!pi
·
∂H

∂!ri
= 0

This final equation is the Liouville’s equation. It is the statement that probability
doesn’t change as you follow it along any trajectory in phase space, as is seen by

writing the Liouville equation as a total derivative,

df

dt
=

∂f

∂t
+

N
∑

i=1

∂f

∂!ri
· !̇ri +

∂f

∂!pi
· !̇pi = 0

To get a feel for how probability distributions evolve, one often evokes the closely

related Liouville’s theorem2. This is the statement that if you follow some region of
phase space under Hamiltonian evolution, then its shape can change but its volume

remains the same. This means that the probability distribution on phase space acts
like an incompressible fluid. Suppose, for example, that it’s a constant, f , over some

region of phase space and zero everywhere else. Then the distribution can’t spread out
over a larger volume, lowering its value. Instead, it must always be f over some region
of phase space. The shape and position of this region can change, but not its volume.

The Liouville equation is often written using the Poisson bracket,

{A,B} ≡
∂A

∂!ri
·
∂B

∂!pi
−

∂A

∂!pi
·
∂B

∂!ri

With this notation, Liouville’s equation becomes simply

∂f

∂t
= {H, f}

2A fuller discussion of Hamiltonian mechanics and Liouville’s theorem can be found in Section 4 of
the classical dynamics notes: http://www.damtp.cam.ac.uk/user/tong/dynamics.html.
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It’s worth making a few simple comments about these probability distributions. Firstly,
an equilibrium distribution is one which has no explicit time dependence:

∂f

∂t
= 0

which holds if {H, f} = 0. One way to satisfy this is if f is a function ofH and the most
famous example is the Boltzmann distribution, f ∼ e−βH . However, notice that there
is nothing (so-far!) within the Hamiltonian framework that requires the equilibrium

distribution to be Boltzmann: any function that Poisson commutes with H will do the
job. We’ll come back to this point in Section 2.2.2.

Suppose that we have some function, A(!ri, !pi), on phase space. The expectation
value of this function is given by

〈A〉 =

∫

dV A(!ri, !pi)f(!ri, !pi; t) (2.3)

This expectation value changes with time only if there is explicit time dependence in
the distribution. (For example, this means that in equilibrium 〈A〉 is constant). We
have

d〈A〉

dt
=

∫

dV A
∂f

∂t

=

∫

dV A

(

∂f

∂!pi

∂H

∂!ri
−

∂f

∂!ri

∂H

∂!pi

)

=

∫

dV

(

−
∂A

∂!pi

∂H

∂!ri
+

∂A

∂!ri

∂H

∂!pi

)

f (2.4)

where we have integrated by parts to get to the last line, throwing away boundary
terms which is justified in this context because f is normalized which ensures that we

must have f → 0 in asymptotic parts of phase space. Finally, we learn that

d〈A〉

dt
=

∫

dV {A,H} f = 〈{A,H}〉 (2.5)

This should be ringing some bells. The Poisson bracket notation makes these expres-
sions for classical expectation values look very similar to quantum expectation values.

2.1.1 The BBGKY Hierarchy

Although we’re admitting some ignorance in our description of the system by consider-

ing a probability distribution over N -particle phase space, this hasn’t really made our
life any easier: we still have a function of ∼ 1023 variables. To proceed, the plan is
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to limit our ambition. We’ll focus not on the probability distribution for all N parti-
cles but instead on the one-particle distribution function. This captures the expected

number of parting lying at some point (!r, !p). It is defined by

f1(!r, !p; t) = N

∫ N
∏

i=2

d3rid
3pi f(!r,!r2, . . . ,!rN , !p, !p2, . . . !pN ; t)

Although we seem to have singled out the first particle for special treatment in the
above expression, this isn’t really the case since all N of our particles are identical.

This is also reflected in the factor N which sits out front which ensures that f1 is
normalized as

∫

d3rd3p f1(!r, !p; t) = N (2.6)

For many purposes, the function f1 is all we really need to know about a system. In

particular, it captures many of the properties that we met in the previous chapter. For
example, the average density of particles in real space is simply

n(!r; t) =

∫

d3p f1(!r, !p; t) (2.7)

The average velocity of particles is

!u(!r; t) =

∫

d3p
!p

m
f1(!r, !p; t) (2.8)

and the energy flux is

!E(!r; t) =

∫

d3p
!p

m
E(!p)f1(!r, !p; t) (2.9)

where we usually take E(!p) = p2/2m. All of these quantities (or at least close relations)

will be discussed in some detail in Section 2.4.

Ideally we’d like to derive an equation governing f1. To see how it changes with time,

we can simply calculate:

∂f1
∂t

= N

∫ N
∏

i=2

d3rid
3pi

∂f

∂t
= N

∫ N
∏

i=2

d3rid
3pi {H, f}

Using the Hamiltonian given in (2.1), this becomes

∂f1
∂t

= N

∫ N
∏

i=2

d3rid
3pi

[

−
N
∑

j=1

!pj
m

·
∂f

∂!rj
+

N
∑

j=1

∂V

∂!rj
·
∂f

∂!pj
+

N
∑

j=1

∑

k<l

∂U(!rk − !rl)

∂!rj
·
∂f

∂!pj

]
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Now, whenever j = 2, . . . N , we can always integrate by parts to move the derivatives
away from f and onto the other terms. And, in each case, the result is simply zero

because when the derivative is with respect to !rj, the other terms depend only on !pi
and vice-versa. We’re left only with the terms that involve derivatives with respect
to !r1 and !p1 because we can’t integrate these by parts. Let’s revert to our previous

notation and call !r1 ≡ !r and !p1 ≡ !p. We have

∂f1
∂t

= N

∫ N
∏

i=2

d3rid
3pi

[

−
!p

m
·
∂f

∂!r
+

∂V (!r)

∂!r
·
∂f

∂!p
+

N
∑

k=2

∂U(!r − !rk)

∂!r
·
∂f

∂!p

]

= {H1, f1}+N

∫ N
∏

i=2

d3rid
3pi

N
∑

k=2

∂U(!r − !rk)

∂!r
·
∂f

∂!p
(2.10)

where we have defined the one-particle Hamiltonian

H1 =
p2

2m
+ V (!r) (2.11)

Notice thatH1 includes the external force V acting on the particle, but it knows nothing
about the interaction with the other particles. All of that information is included in

the last term with U(!r−!rk). We see that the evolution of the one-particle distribution
function is described by a Liouville-like equation, together with an extra term. We

write

∂f1
∂t

= {H1, f1}+

(

∂f1
∂t

)

coll

(2.12)

The first term is sometimes referred to as the streaming term. It tells you how the
particles move in the absence of collisions. The second term, known as the collision

integral, is given by the second term in (2.10). In fact, because all particles are the

same, each of the (N − 1) terms in
∑N

k=2 in (2.10) are identical and we can write

(

∂f1
∂t

)

coll

= N(N − 1)

∫

d3r2d
3p2

∂U(!r − !r2)

∂!r
·
∂

∂!p

∫ N
∏

i=3

d3rid
3pi f(!r,!r2, . . . , !p, !p2, . . . ; t)

But now we’ve got something of a problem. The collision integral can’t be expressed
in terms of the one-particle distribution function. And that’s not really surprising. As

the name suggests, the collision integral captures the interactions – or collisions – of
one particle with another. Yet f1 contains no information about where any of the other

particles are in relation to the first. However some of that information is contained in
the two-particle distribution function,

f2(!r1,!r2, !p1, !p2; t) ≡ N(N − 1)

∫ N
∏

i=3

d3rid
3pi f(!r1,!r2, . . . , !p1, !p2, . . . ; t)
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With this definition, the collision integral is written simply as
(

∂f1
∂t

)

coll

=

∫

d3r2d
3p2

∂U(!r − !r2)

∂!r
·
∂f2
∂!p

(2.13)

The collision term doesn’t change the distribution of particles in space. This is captured
by the particle density (2.7) which we get by simply integrating n =

∫

d3pf1. But, after
integrating over

∫

d3p, we can perform an integrating by parts in the collision integral

to see that it vanishes. In contrast, if we’re interested in the distribution of velocities –
such as the current (2.8) or energy flux (2.9) – then the collision integral is important.

The upshot of all of this is that if we want to know how the one-particle distribution
function evolves, we also need to know something about the two-particle distribution
function. But we can always figure out how f2 evolves by repeating the same calculation

that we did above for f1. It’s not hard to show that f2 evolves by a Liouville-like
equation, but with a corrected term that depends on the three-particle distribution

function f3. And f3 evolves in a Liouville manner, but with a correction term that
depends on f4, and so on. In general, the n-particle distribution function

fn(!r1, . . .!rn, !p1, . . . !pn; t) =
N !

(N − n)!

∫ N
∏

i=n+1

d3rid
3pi f(!r1, . . .!rN , !p1, . . . !pN ; t)

obeys the equation

∂fn
∂t

= {Hn, fn}+
n

∑

i=1

∫

d3rn+1d
3pn+1

∂U(!ri − !rn+1)

∂!ri
·
∂fn+1

∂!pi
(2.14)

where the effective n-body Hamiltonian includes the external force and any interactions
between the n particles but neglects interactions with any particles outside of this set,

Hn =
n

∑

i=1

(

!p 2
i

2m
+ V (!ri)

)

+
∑

i<j≤n

U(!ri − !rj)

The equations (2.14) are known as the BBGKY hierarchy. (The initials stand for

Bogoliubov, Born, Green, Kirkwood and Yuan). They are telling us that any group
of n particles evolves in a Hamiltonian fashion, corrected by interactions with one of

the particles outside that group. At first glance, it means that there’s no free lunch;
if we want to understand everything in detail, then we’re going to have to calculate
everything. We started with the Liouville equation governing a complicated function

f of N ∼ O(1023) variables and it looks like all we’ve done is replace it with O(1023)
coupled equations.
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However, there is an advantage is working with the hierarchy of equations (2.14)
because they isolate the interesting, simple variables, namely f1 and other lower fn.

This means that the equations are in a form that is ripe to start implementing various
approximations. Given a particular problem, we can decide which terms are important
and, ideally, which terms are so small that they can be ignored, truncating the hierarchy

to something manageable. Exactly how you do this depends on the problem at hand.
Here we explain the simplest, and most useful, of these truncations: the Boltzmann

equation.

2.2 The Boltzmann Equation

In this section, we explain how to write down a closed equation for f1 alone. This
will be the famous Boltzmann equation. The main idea that we will use is that there

are two time scales in the problem. One is the time between collisions, τ , known as
the scattering time or relaxation time. The second is the collision time, τcoll, which

is roughly the time it takes for the process of collision between particles to occur. In
situations where

τ % τcoll (2.15)

we should expect that, for much of the time, f1 simply follows its Hamiltonian evolution
with occasional perturbations by the collisions. This, for example, is what happens for

the dilute gas. And this is the regime we will work in from now on.

At this stage, there is a right way and a less-right way to proceed. The right way is
to derive the Boltzmann equation starting from the BBGKY hierarchy. And we will do

this in Section 2.2.3. However, as we shall see, it’s a little fiddly. So instead we’ll start
by taking the less-right option which has the advantage of getting the same answer

but in a much easier fashion. This option is to simply guess what form the Boltzmann
equation has to take.

2.2.1 Motivating the Boltzmann Equation

We’ve already caught our first glimpse of the Boltzmann equation in (2.12),

∂f1
∂t

= {H1, f1}+

(

∂f1
∂t

)

coll

(2.16)

But, of course, we don’t yet have an expression for the collision integral in terms of
f1. It’s clear from the definition (2.13) that the second term represents the change in
momenta due to two-particle scattering. When τ % τcoll, the collisions occur occasion-

ally, but abruptly. The collision integral should reflect the rate at which these collisions
occur.
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Suppose that our particle sits at (!r, !p) in phase space and collides with another
particle at (!r, !p2). Note that we’re assuming here that collisions are local in space so

that the two particles sit at the same point. These particles can collide and emerge
with momenta !p ′

1 and !p ′
2. We’ll define the rate for this process to occur to be

Rate = ω(!p, !p2|!p
′
1, !p

′
2) f2(!r,!r, !p, !p2) d

3p2d
3p′1d

3p′2 (2.17)

(Here we’ve dropped the explicit t dependence of f2 only to keep the notation down).
The scattering function ω contains the information about the dynamics of the process.

It looks as if this is a new quantity which we’ve introduced into the game. But, using
standard classical mechanics techniques, one can compute ω for a given inter-atomic
potential U(!r). (It is related to the differential cross-section; we will explain how to do

this when we do things better in Section 2.2.3). For now, note that ω is proportional to
the two-body distribution function f2 since this tells us the chance that two particles

originally sit in (!r, !p) and (!r, !p2).

We’d like to focus on the distribution of particles with some specified momentum
!p. Two particles with momenta !p and !p2 can be transformed in two particles with
momenta !p ′

1 and !p ′
2. Since both momenta and energy are conserved in the collision, we

have

!p + !p2 = !p ′
1 + !p ′

2 (2.18)

p2 + p22 = p′ 21 + p′ 22 (2.19)

There is actually an assumption that is hiding in these equations. In general, we’re
considering particles in an external potential V . This provides a force on the particles

which, in principle, could mean that the momentum and kinetic energy of the particles
is not the same before and after the collision. To eliminate this possibility, we will

assume that the potential only varies appreciably over macroscopic distance scales, so
that it can be neglected on the scale of atomic collisions. This, of course, is entirely
reasonable for most external potentials such as gravity or electric fields. Then (2.18)

and (2.19) continue to hold.

While collisions can deflect particles out of a state with momentum !p and into a
different momentum, they can also deflect particles into a state with momentum !p.

This suggests that the collision integral should contain two terms,
(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2

[

ω(!p ′
1, !p

′
2|!p, !p1) f2(!r,!r, !p

′
1, !p

′
2)− ω(!p, !p2|!p

′
1, !p

′
2)f2(!r,!r, !p, !p2)

]

The first term captures scattering into the state !p, the second scattering out of the
state !p.
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The scattering function obeys a few simple requirements. Firstly, it is only non-
vanishing for scattering events that obey the conservation of momentum (2.18) and

energy (2.19). Moreover, the discrete symmetries of spacetime also give us some im-
portant information. Under time reversal, !p → −!p and, of course, what was coming in
is now going out. This means that any scattering which is invariant under time reversal

(which is more or less anything of interest) must obey

ω(!p, !p2|!p
′
1, !p

′
2) = ω(−!p ′

1,−!p ′
2|− !p,−!p2)

Furthermore, under parity (!r, !p) → (−!r,−!p). So any scattering process which is parity
invariant further obeys

ω(!p, !p2|!p
′
1, !p

′
2) = ω(−!p,−!p2|− !p ′

1,−!p ′
2)

The combination of these two means that the scattering rate is invariant under exchange
of ingoing and outgoing momenta,

ω(!p, !p2|!p
′
1, !p

′
2) = ω(!p ′

1, !p
′
2|!p, !p2) (2.20)

(There is actually a further assumption of translational invariance here, since the scat-

tering rate at position −!r should be equivalent to the scattering rate at position +!r).

The symmetry property (2.20) allows us to simplify the collision integral to
(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p, !p2)

[

f2(!r,!r, !p
′
1, !p

′
2)− f2(!r,!r, !p, !p2)

]

(2.21)

To finish the derivation, we need to face up to our main goal of expressing the collision
integral in terms of f1 rather than f2. We make the assumption that the velocities of

two particles are uncorrelated, so that we can write

f2(!r,!r, !p, !p2) = f1(!r, !p)f1(!r, !p2) (2.22)

This assumption, which sometimes goes by the name of molecular chaos, seems innocu-
ous enough. But actually it is far from innocent! To see why, let’s look more closely

at what we’ve actually assumed. Looking at (2.21), we can see that we have taken the
rate of collisions to be proportional to f2(!r,!r, !p1, !p2) where p1 and p2 are the momenta

of the particles before the collision. That means that if we substitute (2.22) into (2.21),
we are really assuming that the velocities are uncorrelated before the collision. And
that sounds quite reasonable: you could imagine that during the collision process, the

velocities between two particles become correlated. But there is then a long time, τ ,
before one of these particles undergoes another collision. Moreover, this next collision
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is typically with a completely different particle and it seems entirely plausible that the
velocity of this new particle has nothing to do with the velocity of the first. Nonethe-

less, the fact that we’ve assumed that velocities are uncorrelated before the collision
rather than after has, rather slyly, introduced an arrow of time into the game. And
this has dramatic implications which we will see in Section 2.3 where we derive the

H-theorem.

Finally, we may write down a closed expression for the evolution of the one-particle

distribution function given by

∂f1
∂t

= {H1, f1}+

(

∂f1
∂t

)

coll

(2.23)

with the collision integral
(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p, !p2)

[

f1(!r, !p
′
1)f1(!r, !p

′
2)− f1(!r, !p)f1(!r, !p2)

]

(2.24)

This is the Boltzmann equation. It’s not an easy equation to solve! It’s a differential
equation on the left, an integral on the right, and non-linear. You may not be surprised

to hear that exact solutions are not that easy to come by. We’ll see what we can do.

2.2.2 Equilibrium and Detailed Balance

Let’s start our exploration of the Boltzmann equation by revisiting the question of the

equilibrium distribution obeying ∂f eq/∂t = 0. We already know that {f,H1} = 0 if f
is given by any function of the energy or, indeed any function that Poisson commutes

with H . For clarity, let’s restrict to the case with vanishing external force, so V (r) = 0.
Then, if we look at the Liouville equation alone, any function of momentum is an
equilibrium distribution. But what about the contribution from the collision integral?

One obvious way to make the collision integral vanish is to find a distribution which
obeys the detailed balance condition,

f eq
1 (!r, !p ′

1)f
eq
1 (!r, !p ′

2) = f eq
1 (!r, !p)f eq

1 (!r, !p2) (2.25)

In fact, it’s more useful to write this as

log(f eq
1 (!r, !p ′

1)) + log(f eq
1 (!r, !p ′

2)) = log(f eq
1 (!r, !p)) + log(f eq

1 (!r, !p2)) (2.26)

How can we ensure that this is true for all momenta? The momenta on the right are

those before the collision; on the left they are those after the collision. From the form of
(2.26), it’s clear that the sum of log f eq

1 must be the same before and after the collision:
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in other words, this sum must be conserved during the collision. But we know what
things are conserved during collisions: momentum and energy as shown in (2.18) and

(2.19) respectively. This means that we should take

log(f eq
1 (!r, !p)) = β (µ−E(!p) + !u · !p ) (2.27)

where E(p) = p2/2m for non-relativistic particles and µ, β and !u are all constants.
We’ll adjust the constant µ to ensure that the overall normalization of f1 obeys (2.6).

Then, writing !p = m!v, we have

f eq
1 (!r, !p) =

N

V

(

β

2πm

)3/2

e−βm("v−"u)2/2 (2.28)

which reproduces the Maxwell-Boltzmann distribution if we identify β with the inverse
temperature. Here !u allows for the possibility of an overall drift velocity. We learn

that the addition of the collision term to the Liouville equation forces us to sit in the
Boltzmann distribution at equilibrium.

There is a comment to make here that will play an important role in Section 2.4.

If we forget about the streaming term {H1, f1} then there is a much larger class of
solutions to the requirement of detailed balance (2.25). These solutions are again of
the form (2.27), but now with the constants µ, β and !u promoted to functions of space

and time. In other words, we can have

f local
1 (!r, !p; t) = n(!r, t)

(

β(!r, t)

2πm

)3/2

exp
(

−β(!r, t)
m

2
[(!v − !u(!r, t)]2

)

(2.29)

Such a distribution is not quite an equilibrium distribution, for while the collision

integral in (2.23) vanishes, the streaming term does not. Nonetheless, distributions
of this kind will prove to be important in what follows. They are said to be in local

equilibrium, with the particle density, temperature and drift velocity varying over space.

The Quantum Boltzmann Equation

Our discussion above was entirely for classical particles and this will continue to be

our focus for the remainder of this section. However, as a small aside let’s look at how
things change for quantum particles. We’ll keep the assumption of molecular chaos,

so f2 ∼ f1f1 as in (2.22). The main difference occurs in the scattering rate (2.17) for
scattering !p1 + !p2 → !p ′

1 + !p ′
2 which now becomes

Rate = ω(!p, !p2|!p
′
1, !p

′
2) f1(!p1)f1(!p2){ 1± f1(!p

′
1)} {1± f(!p ′

2)} d
3p2d

3p′1d
3p′2
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The extra terms are in curly brackets. We pick the + sign for bosons and the − sign
for fermions. The interpretation is particularly clear for fermions, where the number of

particles in a given state can’t exceed one. Now it’s not enough to know the probability
that initial state is filled. We also need to know that probability that the final state is
free for the particle to scatter into: and that’s what the {1− f1} factors are telling us.

The remaining arguments go forward as before, resulting in the quantum Boltzmann

equation
(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p, !p2)

[

f1(!p
′
1)f1(!p

′
2){1± f1(!p)} {1± f1(!p2}

−f1(!p)f1(!p2) {1± f1(!p
′
1)} {1± f1(!r, !p

′
2)}

]

To make contact with what we know, we can look again at the requirement for equi-
librium. The condition of detailed balance now becomes

log

(

f eq
1 (!p ′

1)

1± f eq
1 (!p ′

1)

)

+ log

(

f eq
1 (!p ′

2)

1± f eq
1 (!p ′

2)

)

= log

(

f eq
1 (!p)

1± f eq
1 (!p)

)

+ log

(

f eq
1 (!p2)

1± f eq
1 (!p2)

)

Which is again solved by relating each log to a linear combination of the energy and
momentum. We find

f eq
1 (!p) =

1

e−β(µ−E("p)+"u·"p) ∓ 1

which reproduces the Bose-Einstein and Fermi-Dirac distributions.

2.2.3 A Better Derivation

In Section (2.2.1), we derived an expression for the collision integral (2.24) using in-
tuition for the scattering processes at play. But, of course, we have a mathematical

expression for the collision integral in (2.13) involving the two-particle distribution
function f2. In this section we will sketch how one can derive (2.24) from (2.13). This

will help clarify some of the approximations that we need to use. At the same time,
we will also review some basic classical mechanics that connects the scattering rate ω
to the inter-particle potential U(r).

We start by returning to the BBGKY hierarchy of equations. For simplicity, we’ll

turn off the external potential V (!r) = 0. We don’t lose very much in doing this because
most of the interesting physics is concerned with the scattering of atoms off each other.
The first two equations in the hierarchy are

(

∂

∂t
+

!p1
m

·
∂

∂!r1

)

f1 =

∫

d3r2d
3p2

∂U(!r1 − !r2)

∂!r1
·
∂f2
∂!p1

(2.30)
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and
(

∂

∂t
+

!p1
m

·
∂

∂!r1
+

!p2
m

·
∂

∂!r2
−

1

2

∂U(!r1 − !r2)

∂!r1
·

[

∂

∂!p1
−

∂

∂!p2

])

f2 = (2.31)

∫

d3r3d
3p3

(

∂U(!r1 − !r3)

∂!r1
·

∂

∂!p1
+

∂U(!r2 − !r3)

∂!r2
·

∂

∂!p2

)

f3

In both of these equations, we’ve gathered the streaming terms on the left, leaving

only the higher distribution function on the right. To keep things clean, we’ve sup-
pressed the arguments of the distribution functions: they are f1 = f1(!r1, !p1; t) and

f2 = f2(!r1,!r2, !p1, !p2; t) and you can guess the arguments for f3.

Our goal is to better understand the collision integral on the right-hand-side of (2.30).
It seems reasonable to assume that when particles are far-separated, their distribution
functions are uncorrelated. Here, “far separated” means that the distance between

them is much farther than the atomic distance scale d over which the potential U(r)
extends. We expect

f2(!r1,!r2, !p1, !p2; t) → f1(!r1, !p1; t)f1(!r2, !p2; t) when |!r1 − !r1| % d

But, a glance at the right-hand-side of (2.30) tells us that this isn’t the regime of
interest. Instead, f2 is integrated ∂U(r)/∂r which varies significantly only over a region
r ≤ d. This means that we need to understand f2 when two particles get close to each

other.

We’ll start by getting a feel for the order of magnitude of various terms in the
hierarchy of equations. Dimensionally, each term in brackets in (2.30) and (2.31) is an

inverse time scale. The terms involving the inter-atomic potential U(r) are associated
to the collision time τcoll.

1

τcoll
∼

∂U

∂!r
·
∂

∂!p

This is the time taken for a particle to cross the distance over which the potential U(r)
varies which, for short range potentials, is comparable to the atomic distance scale, d,

itself and

τcoll ∼
d

v̄rel

where v̄rel is the average relative speed between atoms. Our first approximation will be
that this is the shortest time scale in the problem. This means that the terms involving

∂U/∂r are typically the largest terms in the equations above and determine how fast
the distribution functions change.
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With this in mind, we note that the equation for f1 is special because it is the only
one which does not include any collision terms on the left of the equation (i.e. in

the Hamiltonian Hn). This means that the collision integral on the right-hand side
of (2.30) will usually dominate the rate of change of f1. (Note, however, we’ll meet
some important exceptions to this statement in Section 2.4). In contrast, the equation

that governs f2 has collision terms on the both the left and the right-hand sides. But,
importantly, for dilute gases, the term on the right is much smaller than the term on

the left. To see why this is, we need to compare the f3 term to the f2 term. If we were
to integrate f3 over all space, we get

∫

d3r2d
3p3 f3 = Nf2

(where we’ve replaced (N − 2) ≈ N in the above expression). However, the right-
hand side of (2.31) is not integrated over all of space. Instead, it picks up a non-zero

contribution over an atomic scale ∼ d3. This means that the collision term on the
right-hand-side of (2.31) is suppressed compared to the one on the left by a factor of
Nd3/V where V is the volume of space. For gases that we live and breath every day,

Nd3/V ∼ 10−3 − 10−4. We make use of this small number to truncate the hierarchy of
equations and replace (2.31) with

(

∂

∂t
+

!p1
m

·
∂

∂!r1
+

!p2
m

·
∂

∂!r2
−

1

2

∂U(!r1 − !r2)

∂!r1
·

[

∂

∂!p1
−

∂

∂!p2

])

f2 ≈ 0 (2.32)

This tells us that f2 typically varies on a time scale of τcoll and a length scale of d.
Meanwhile, the variations of f1 is governed by the right-hand-side of (2.30) which, by
the same arguments that we just made, are smaller than the variations of f2 by a factor

of Nd3/V . In other words, f1 varies on the larger time scale τ .

In fact, we can be a little more careful when we say that f2 varies on a time scale

τcoll. We see that – as we would expect – only the relative position is affected by the
collision term. For this reason, it’s useful to change coordinate to the centre of mass
and the relative positions of the two particles. We write

!R =
1

2
(!r1 + !r2) , !r = !r1 − !r2

and similar for the momentum

!P = !p1 + !p2 , !p =
1

2
(!p1 − !p2)

And we can think of f2 = f2(!R,!r, !P, !p; t). The distribution function will depend on the
centre of mass variables !R and !P in some slow fashion, much as f1 depends on position

– 27 –



and momentum. In contrast, the dependence of f2 on the relative coordinates !r and
!p is much faster – these vary over the short distance scale and can change on a time

scale of order τcoll.

Since the relative distributions in f2 vary much more quickly that f1, we’ll assume

that f2 reaches equilibrium and then feeds into the dynamics of f1. This means that,
ignoring the slow variations in !R and !P , we will assume that ∂f2/∂t = 0 and replace

(2.32) with the equilibrium condition
(

!p

m
·
∂

∂!r
−

∂U(!r)

∂!r
·
∂

∂!p

)

f2 ≈ 0 (2.33)

This is now in a form that allows us to start manipulating the collision integral on the

right-hand-side of (2.30). We have
(

∂f1
∂t

)

coll

=

∫

d3r2d
3p2

∂U(!r1 − !r2)

∂!r1
·
∂f2
∂!p1

=

∫

d3r2d
3p2

∂U(!r)

∂!r
·

[

∂

∂!p1
−

∂

∂!p2

]

f2

=
1

m

∫

|"r1−"r2|≤d

d3r2d
3p2 (!p1 − !p2) ·

∂f2
∂!r

(2.34)

where in the second line the extra term ∂/∂!p2 vanishes if we integrate by parts and,
in the third line, we’ve used our equilibrium condition (2.33), with the limits on the

integral in place to remind us that only the region r ≤ d contributes to the collision
integral.

A Review of Scattering Cross Sections

To complete the story, we still need to turn (2.34) into the collision integral (2.24).

But most of the work simply involves clarifying how the scattering rate ω(!p, !p2|!p ′
1, !p

′
2)

is defined for a given inter-atomic potential U(!r1−!r2). And, for this, we need to review

the concept of the differential cross section.

Let’s think about the collision between two particles. They start with momenta

!pi = m!vi and end with momenta !p ′
i = m!v ′

i with i = 1, 2. Now let’s pick a favourite,
say particle 1. We’ll sit in its rest frame and consider an onslaught of bombarding

particles, each with velocity !v2−!v1. This beam of incoming particles do not all hit our
favourite boy at the same point. Instead, they come in randomly distributed over the

plane perpendicular to !v2 − !v1. The flux, I, of these incoming particles is the number
hitting this plane per area per second,

I =
N

V
|!v2 − !v1|
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dσ

dΩ

θ
φ

Figure 4: The differential cross section.

Now spend some time staring at Figure 4. There are a number of quantities defined
in this picture. First, the impact parameter, b, is the distance from the asymptotic

trajectory to the dotted, centre line. We will use b and φ as polar coordinates to
parameterize the plane perpendicular to the incoming particle. Next, the scattering
angle, θ, is the angle by which the incoming particle is deflected. Finally, there are two

solid angles, dσ and dΩ, depicted in the figure. Geometrically, we see that they are
given by

dσ = bdbdφ and dΩ = sin θdθdφ

The number of particles scattered into dΩ in unit time is Idσ. We usually write this as

I
dσ

dΩ
dΩ = Ib db dφ (2.35)

where the differential cross section is defined as

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

=
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

d(b2)

d cos θ

∣

∣

∣

∣

=
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

(2.36)

You should think of this in the following way: for a fixed (!v2 − !v1), there is a unique

relationship between the impact parameter b and the scattering angle θ and, for a given
potential U(r), you need to figure this out to get |dσ/dΩ| as a function of θ.
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b

Figure 5: Particle scattering from a hard sphere

Now we can compare this to the notation that we used earlier in (2.17). There we

talked about the rate of scattering into a small area d3p′1d
3p′2 in momentum space. But

this is the same thing as the differential cross-section.

ω(!p, !p2; !p
′
1, !p

′
2) d

3p′1d
3p′2 = |!v − !v2|

∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

dΩ (2.37)

(Note, if you’re worried about the fact that d3p′1d
3p′2 is a six-dimensional area while

dΩ is a two dimensional area, recall that conservation of energy and momenta provide
four restrictions on the ability of particles to scatter. These are implicit on the left,

but explicit on the right).

An Example: Small Things Hitting a Hard Sphere

To get a sense for the meaning of the cross-section, let’s look at a simple example.

We’ll take a hard sphere of diameter d and bombard it with much smaller objects which
we can think of as point particles. These particles scatter at an impact parameter b ≤

d/2. From Figure 5, we see that the scattering angle is θ = π−2α where b = (d/2) sinα.
So we have

b2 =
d2

4
sin2

(

π
2 − 1

2θ
)

)

So, from (2.36), we find the differential cross-section
∣

∣

∣

∣

dσ

dΩ

∣

∣

∣

∣

=
d2

16

Notice that for this simple example the differential cross-section is independent of the

scattering angle θ. This is not typical. The total cross-section is defined as

σT = 2π

∫ π

0

dθ sin θ
dσ

dΩ
= π

(

d

2

)2
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Figure 6: Hard sphere scattering from a hard sphere

which provides a nice justification for the name because this is indeed the cross-sectional
area of a sphere of radius d/2.

Another Example: Hard Spheres Hitting Hard Spheres

Let’s now look at a closely related example: hard sphere hitting hard spheres. This

was our basic model for a gas in Section 1.2. Now the impact parameter is b ≤ d, the
diameter of the sphere. Again we have the scattering angle given by θ = π− 2α where

now the angle α is determined by the line joining the centre of the two spheres when
they collide. This is shown in the Figure 6. The impact parameter is given by

b = 2
b

2
sinα

Now the calculation is the same as our previous example, with just a factor of 2 dif-

ference. The differential cross-section is given by |dσ/dΩ| = d2/4 and the total cross-
section given by σT = πd2. This reflects the fact that two spheres will collide if their

centres come within a distance d of each other. (A similar factor of 2 appears in the
derivation of the van der Waals equation which can be found in Section 2.5.2 of the
Statistical Physics lecture notes).

Almost Done

With this refresher course on classical scattering, we can return to the collision integral

(2.34) in the Boltzmann equation.
(

∂f1
∂t

)

coll

=

∫

|"r1−"r2|≤d

d3r2d
3p2 (!v1 − !v2) ·

∂f2
∂!r

We’ll work in cylindrical polar coordinates shown in Figure 7. The direction parallel
to !v2 − !v1 is parameterized by x; the plane perpendicular is parameterised by φ and
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Figure 7: Two particle scattering.

the impact parameter b. We’ve also shown the collision zone in this figure. Using the

definitions (2.35) and (2.37), we have

(

∂f1
∂t

)

coll

=

∫

d3p2 |!v1 − !v2|

∫

dφ db b

∫ x2

x1

∂f2
∂x

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p, !p2) [f2(x2)− f2(x1)]

It remains only to decide what form the two-particle distribution function f2 takes just

before the collision at x = x1 and just after the collision at x = x2. At this point we
invoke the assumption of molecular chaos. Just before we enter the collision, we assume

that the two particles are uncorrelated. Moreover, we assume that the two particles
are once again uncorrelated by the time they leave the collision, albeit now with their

new momenta

f2(x1) = f1(!r, !p1; t)f1(!r, !p2; t) and f2(x2) = f1(!r, !p
′
1; t)f1(!r, !p

′
2; t)

Notice that all functions f1 are evaluated at the same point !r in space since we’ve

assumed that the single particle distribution function is suitably coarse grained that it
doesn’t vary on scales of order d. With this final assumption, we get what we wanted:
the collision integral is given by

(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p, !p2)

[

f1(!r, !p
′
1)f1(!r, !p

′
2)− f1(!r, !p)f1(!r, !p2)

]

in agreement with (2.24).
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2.3 The H-Theorem

The topics of thermodynamics and statistical mechanics are all to do with the equi-

librium properties of systems. One of the key intuitive ideas that underpins their
importance is that if you wait long enough, any system will eventually settle down to

equilibrium. But how do we know this? Moreover, it seems that it would be rather
tricky to prove: settling down to equilibrium clearly involves an arrow of time that dis-
tinguishes the future from the past. Yet the underlying classical mechanics is invariant

under time reversal.

The purpose of this section is to demonstrate that, within the framework of the
Boltzmann equation, systems do indeed settle down to equilibrium. As we described

above, we have introduced an arrow of time into the Boltzmann equation. We didn’t
do this in any crude way like adding friction to the system. Instead, we merely assumed
that particle velocities were uncorrelated before collisions. That would seem to be a

rather minor input but, as we will now show, it’s enough to demonstrate the approach
to equilibrium.

Specifically, we will prove the ”H-theorem”, named after a quantity H introduced

by Boltzmann. (H is not to be confused with the Hamiltonian. Boltzmann originally
called this quantity something like a German E , but the letter was somehow lost in
translation and the name H stuck). This quantity is

H(t) =

∫

d3rd3p f1(!r, !p; t) log(f1(!r, !p; t)

This kind of expression is familiar from our first statistical mechanics course where we
saw that the entropy S for a probability distribution p is S = −kBp log p. In other

words, this quantity H is simply

S = −kBH

The H-theorem, first proven by Boltzmann in 1872, is the statement that H always
decreases with time. The entropy always increases. We will now prove this.

As in the derivation (2.4), when you’re looking at the variation of expectation values

you only care about the explicit time dependence, meaning

dH

dt
=

∫

d3rd3p (log f1 + 1)
∂f1
∂t

=

∫

d3rd3p log f1
∂f1
∂t
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where we can drop the +1 because
∫

f1 = N is unchanging, ensuring that
∫

∂f1/∂t = 0.
Using the Boltzmann equation (2.23), we have

dH

dt
=

∫

d3rd3p log f1

(

∂V

∂!r
·
∂f1
∂!p

−
!p

m
·
∂f1
∂!r

+

(

∂f1
∂t

)

coll

)

But the first two terms in this expression both vanish. You can see this by integrating

by parts twice, first moving the derivative away from f1 and onto log f1, and then
moving it back. We learn that the change in H is governed entirely by the collision
terms

dH

dt
=

∫

d3rd3p log f1

(

∂f1
∂t

)

coll

=

∫

d3rd3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2) log f1(!p1)

×
[

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

(2.38)

where I’ve suppressed !r and t arguments of f1 to keep things looking vaguely reasonable
I’ve also relabelled the integration variable !p → !p1. At this stage, all momenta are

integrated over so they are really nothing but dummy variables. Let’s relabel 1 ↔ 2 on
the momenta. All the terms remain unchanged except the log. So we can also write

dH

dt
=

∫

d3rd3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2) log f1(!p2)

×
[

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

(2.39)

Adding (2.38) and (2.39), we have the more symmetric looking expression

dH

dt
=

1

2

∫

d3rd3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2) log [f1(!p1) f1(!p2)]

×
[

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

(2.40)

Since all momenta are integrated over, we’re allowed to just flip the dummy indices

again. This time we swap !p ↔ !p ′ in the above expression. But, using the symmetry
property (2.20), the scattering function remains unchanged3. We get

dH

dt
= −

1

2

∫

d3rd3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2) log [f1(!p

′
1) f1(!p

′
2)]

3An aside: it’s not actually necessary to assume (2.20) to make this step. We can get away with
the weaker result

∫

d3p′1d
3p′2 ω("p ′

1, "p
′

2|"p1, "p2) =

∫

d3p′1d
3p′2 ω("p1, "p2|"p

′

1, "p
′

2)

which follows from unitarity of the scattering matrix.
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×
[

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

(2.41)

Finally, we add (2.40) and (2.41) to get

dH

dt
= −

1

4

∫

d3rd3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2)×

[

log [f1(!p
′
1) f1(!p

′
2)]− log [f1(!p1) f1(!p2)]

][

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

(2.42)

The bottom line of this expression is a function (log x− log y)(x− y). It is positive for
all values of x and y. Since the scattering rate is also positive, we have the proof of the
H-theorem.

dH

dt
≤ 0 ⇔

dS

dt
≥ 0

And there we see the arrow of time seemingly emerging from time-invariant Hamiltonian

mechanics! Clearly, this should be impossible, a point first made by Loschmidt soon
after Boltzmann’s original derivation. But, as we saw earlier, everything hinges on the
assumption of molecular chaos (2.22). This was where we broke time-reversal symmetry,

ultimately ensuring that entropy increases only in the future. Had we instead decided
in (2.21) that the rate of scattering was proportional to f2 after the collision, again

assuming f2 ∼ f1f1 then we would find that entropy always decreases as we move into
the future.

There is much discussion in the literature about the importance of the H-theorem and
its relationship to the second law of thermodynamics. Notably, it is not particularly

hard to construct states which violate the H-theorem by virtue of their failure to obey
the assumption of molecular chaos. Nonetheless, these states still obey a suitable second
law of thermodynamics4.

The H-theorem is not a strict inequality. For some distributions, the entropy remains
unchanged. From (2.42), we see that these obey

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

But this is simply the requirement of detailed balance (2.25). And, as we have seen al-

ready, this is obeyed by any distribution satisfying the requirement of local equilibrium
(2.29).

4This was first pointed out by E. T. Jaynes in the paper “Violation of Boltzmann’s H Theorem in

Real Gases”, published in Physical Review A, volume 4, number 2 (1971).
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2.4 A First Look at Hydrodynamics

Hydrodynamics is what you get if you take thermodynamics and splash it. You know
from your first course on statistical mechanics that, at the most coarse grained level,

the equilibrium properties of any system are governed by the thermodynamics. In the
same manner, low energy, long wavelength, excitations of any system are described by

hydrodynamics.

More precisely, hydrodynamics describes the dynamics of systems that are in local

equilibrium, with parameters that vary slowly in space in time. As we will see, this
means that the relevant dynamical variables are, in the simplest cases,

• Density ρ(!r, t) = mn(!r, t)

• Temperature T (!r, t)

• Velocity !u(!r, t)

Our goal in this section is to understand why these are the relevant variables to describe
the system and to derive the equations that govern their dynamics.

2.4.1 Conserved Quantities

We’ll start by answering the first question: why are these the variables of interest? The
answer is that these are quantities which don’t relax back down to their equilibrium

value in an atomic blink of an eye, but instead change on a much slower, domestic time
scale. At heart, the reason for they have this property is that they are all associated
to conserved quantities. Let’s see why.

Consider a general function A(!r, !p) over the single particle phase space. Because we

live in real space instead of momentum space, the question of how things vary with
!r is more immediately interesting. For this reason, we integrate over momentum and
define the average of a quantity A(!r, !p) to be

〈A(!r, t)〉 =

∫

d3p A(!r, !p)f1(!r, !p; t)
∫

d3p f1(!r, !p; t)

However, we’ve already got a name for the denominator in this expression: it is the

number density of particles

n(!r, t) =

∫

d3p f1(!r, !p; t) (2.43)
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(As a check of the consistency of our notation, if you plug the local equilibrium dis-
tribution (2.29) into this expression, then the n(!r, t) on the left-hand-side equals the

n(!r, t) defined in (2.29)). So the average is

〈A(!r, t)〉 =
1

n(!r, t)

∫

d3p A(!r, !p)f1(!r, !p; t) (2.44)

It’s worth making a couple of simple remarks. Firstly, this is different from the average
that we defined earlier in (2.3) when discussion Liouville evolution. Here we’re inte-

grating only over momenta and the resulting average is a function of space. A related
point is that we’re at liberty to take functions which depend only on !r (and not on !p)

in and out of the 〈·〉 brackets. So, for example, 〈nA〉 = n〈A〉.

We’re interested in the how the average of A changes with time. We looked at this

kind of question for Liouville evolution earlier in this section and found the answer
(2.5). Now we want to ask the same question for the Boltzmann equation. Before we

actually write down the answer, you can guess what it will look like: there will be a
streaming term and a term due to the collision integral. Moreover, we know from our

previous discussion that the term involving the collision integral will vary much faster
than the streaming term.

Since we’re ultimately interested in quantities which vary slowly, this motivates look-
ing at functions A which vanish when integrated against the collision integral. We will
see shortly that the relevant criterion is

∫

d3p A(!r, !p)

(

∂f1
∂t

)

coll

= 0

We’d like to find quantities A which have this property for any distribution f1. Using
our expression for the collision integral (2.23), we want

∫

d3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p, !p2)A(!r, !p1)

[

f1(!r, !p
′
1)f1(!r, !p

′
2)− f1(!r, !p)f1(!r, !p2)

]

= 0

This now looks rather similar to equation (2.38), just with the log f replaced by A. In-
deed, we can follow the steps between (2.38) and (2.41), using the symmetry properties

of ω, to massage this into the form

∫

d3p1d
3p2d

3p′1d
3p′2 ω(!p ′

1, !p
′
2|!p1, !p2)

[

f1(!p
′
1)f1(!p

′
2)− f1(!p1)f1(!p2)

]

×
[

A(!r, !p1) + A(!r, !p2)− A(!r, !p ′
1)−A(!r, !p ′

2)
]

= 0
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Now it’s clear that if we want this to vanish for all distributions, then A itself must
have the property that it remains unchanged before and after the collision,

A(!r, !p1) + A(!r, !p2) = A(!r, !p ′
1) + A(!r, !p ′

2) (2.45)

Quantities which obey this are sometimes called collisional invariants. Of course, in

the simplest situation we already know what they are: momentum (2.18) and energy
(2.19) and, not forgetting, the trivial solution A = 1. We’ll turn to each of these in

turn shortly. But first let’s derive an expression for the time evolution of any quantity
obeying (2.45).

Take the Boltzmann equation (2.23), multiply by a collisional invariant A(!r, !p) and
integrate over

∫

d3p. Because the collision term vanishes, we have

∫

d3p A(!r, !p)

(

∂

∂t
+

!p

m
·
∂

∂!r
+ !F ·

∂

∂!p

)

f1(!r, !p, t) = 0

where the external force is !F = −∇V . We’ll integrate the last term by parts (remem-
bering that the force !F can depend on position but not on momentum). We can’t

integrate the middle term by parts since we’re not integrating over space, but nonethe-
less, we’ll also rewrite it. Finally, since A has no explicit time dependence, we can take

it inside the time derivative. We have

∂

∂t

∫

d3p Af +
∂

∂!r
·

∫

d3p
!p

m
Af −

∫

d3p
!p

m
·
∂A

∂!r
f −

∫

d3p !F ·
∂A

∂!p
f = 0

Although this doesn’t really look like an improvement, the advantage of writing it in
this way is apparent when we remember our expression for the average (2.44). Using

this notation, we can write the evolution of A as

∂

∂t
〈nA〉+

∂

∂!r
· 〈n!vA〉 − n〈!v ·

∂A

∂!r
〉 − n〈!F ·

∂A

∂!p
〉 = 0 (2.46)

where !v = !p/m. This is our master equation that tells us how any collisional invariant

changes. The next step is to look at specific quantities. There are three and we’ll take
each in turn

Density

Our first collisional invariant is the trivial one: A = 1. If we plug this into (2.46) we

get the equation for the particle density n(!r, t),

∂n

∂t
+

∂

∂!r
· (n!u) (2.47)
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where the average velocity !u of the particles is defined by

!u(!r, t) = 〈!v〉

Notice that, once again, our notation is consistent with earlier definitions: if we pick

the local equilibrium distribution (2.29), the !u(!r, t) in (2.29) agrees with that defined
above. The result (2.47) is the continuity equation, expressing the conservation of
particle number. Notice, however, that this is not a closed expression for the particle

density n: we need to know the velocity !u as well.

It’s useful to give a couple of extra, trivial, definitions at this stage. First, although

we won’t use this notation, the continuity equation is sometimes written in terms of
the current, !J(!r, t) = n(!r, t) !u(!r, t). In what follows, we will often replace the particle

density with the mass density,

ρ(!r, t) = mn(!r, t)

Momentum

Out next collisional invariant is the momentum. We substitute A = m!v into (2.46) to
find

∂

∂t
(mnui) +

∂

∂rj
〈mnvjvi〉 − 〈nFi〉 = 0 (2.48)

We can play around with the middle term a little. We write

〈vjvi〉 = 〈(vj − uj)(vi − ui)〉+ ui〈vj〉+ uj〈vi〉 − iiuj

= 〈(vj − uj)(vi − ui)〉+ uiuj

We define a new object known as the pressure tensor,

Pij = Pji = ρ〈(vj − uj)(vi − ui)〉

This tensor is computing the flux of i-momentum in the j-direction. It’s worth pausing
to see why this is related to pressure. Clearly, the exact form of Pij depends on the

distribution of particles. But, we can evaluate the pressure tensor on the equilibrium,
Maxwell-Boltzmann distribution (2.28). The calculation boils down to the same one

you did in your first Statistical Physics course to compute equipartition: you find

Pij = nkBT δij (2.49)
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which, by the ideal gas law, is proportional to the pressure of the gas. Using this
definition – together with the continuity equation (2.47) – we can write (2.48) as

ρ

(

∂

∂t
+ uj

∂

∂rj

)

ui =
ρ

m
Fi −

∂

∂rj
Pij (2.50)

This is the equation which captures momentum conservation in our system. Indeed, it

has a simple interpretation in terms of Newton’s second law. The left-hand-side is the
acceleration of an element of fluid. The combination of derivatives is sometimes called
the material derivative,

Dt ≡
∂

∂t
+ uj

∂

∂rj
(2.51)

It captures the rate of change of a quantity as seen by an observer swept along the
streamline of the fluid. The right-hand side of (2.50) includes both the external force
!F and an additional term involving the internal pressure of the fluid. As we will see
later, ultimately viscous terms will also come from here.

Note that, once again, the equation (2.50) does not provide a closed equation for
the velocity !u. You now need to know the pressure tensor Pij which depends on the

particular distribution.

Kinetic Energy

Our final collisional invariant is the kinetic energy of the particles. However, rather
than take the absolute kinetic energy, it is slightly easier if we work with the relative

kinetic energy,

A =
1

2
m (!v − !u)2

If we substitute this into the master equation5 (2.46), the term involving the force

vanishes (because 〈vi − ui〉 = 0). However, the term that involves ∂E/∂ri is not zero
because the average velocity !u depends on !r. We have

1

2

∂

∂t
〈ρ(!v − !u)2〉+

1

2

∂

∂ri
〈ρvi(!v − !u)2〉 − ρ〈vi

∂uj

∂ri
(!v − !u)2〉 = 0 (2.52)

5There is actually a subtlety here. In deriving the master equation (2.46), we assumed that A has
no explicit time dependence, but the A defined above does have explicit time dependence through
"u("r, t). Nonetheless, you can check that (2.46) still holds, essentially because the extra term that you
get is ∼ 〈("v − "u) · ∂"u/∂t〉 = 〈"v − "u〉 · ∂"u/∂t = 0.
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At this point, we define the temperature, T (!r, t) of our non-equilibrium system. To do
so, we fall back on the idea of equipartition and write

3

2
kBT (!r, t) =

1

2
m〈(!v − !u(!r, t))2〉 (2.53)

This coincides with our familiar definition of temperature for a system in local equilib-

rium (2.29), but now extends this to a system that is out of equilibrium. Note that the
temperature is a close relative of the pressure tensor, TrP = 3ρkBT/m.

We also define a new quantity, the heat flux,

qi =
1

2
mρ〈(vi − ui) (!v − !u)2〉 (2.54)

(This actually differs by an overall factor of m from the definition of !q that we made in
Section 1. This has the advantage of making the formulae we’re about to derive a little

cleaner). The utility of both of these definitions becomes apparent if we play around
with the middle term in (2.52). We can write

1

2
mρ〈vi(!v − !u)2〉 =

1

2
mρ〈(vi − ui) (!v − !u)2〉+

1

2
mρui〈(!v − !u)2〉

= qi +
3

2
ρuikBT

Invoking the definition of the pressure tensor (2.49), we can now rewrite (2.52) as

3

2

∂

∂t
(ρkBT ) +

∂

∂ri

(

qi +
3

2
ρuikBT

)

+mPij
∂uj

∂xi
= 0

Because Pij = Pji, we can replace ∂uj/∂ri in the last term with the symmetric tensor

known as the rate of strain (and I promise this is the last new definition for a while!)

Uij =
1

2

(

∂ui

∂rj
+

∂uj

∂ri

)

(2.55)

Finally, with a little help from the continuity equation (2.47), our expression for the
conservation of energy becomes

ρ

(

∂

∂t
+ ui

∂

∂ri

)

kBT +
2

3

∂qi
∂ri

+
2m

3
UijPij = 0 (2.56)

It’s been a bit of a slog, but finally we have three equations describing how the particle

density n (2.47), the velocity !u (2.50) and the temperature T (2.56) change with time.
It’s worth stressing that these equations hold for any distribution f1. However, the
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set of equations are not closed. The equation for n depends on !u; the equation for !u
depends on Pij and the equation for T (which is related to the trace of Pij) depends

on a new quantity !q. And to determine any of these, we need to solve the Boltzmann
equation and compute the distribution f1. But the Boltzmann equation is hard! How
to do this?

2.4.2 Ideal Fluids

We start by simply guessing a form of the distribution function f1(!r, !p; t). We know that
the collision term in the Boltzmann equation induces a fast relaxation to equilibrium,

so if we’re looking for a slowly varying solution a good guess is to take a distribution
for which (∂f1/∂t)coll = 0. But we’ve already met distribution functions that obey this

condition in (2.29): they are those describing local equilibrium. Therefore, our first
guess for the distribution, which we write as f (0)

1 , is local equilibrium

f (0)
1 (!r, !p; t) = n(!r, t)

(

1

2πmkBT (!r, t)

)3/2

exp

(

−
m

2kBT (!r, t)
[(!v − !u(!r, t)]2

)

(2.57)

where !p = m!v. In general, this distribution is not a solution to the Boltzmann equation

since it does not vanish on the streaming terms. Nonetheless, we will take it as our
first approximation to the true solution and later see what we’re missing.

The distribution is normalized so that the number density and temperature defined
in (2.43) and (2.53) respectively coincide with n(!r, t) and T (!r, t) in (2.29). But we can

also use the distribution to compute Pij and !q. We have

Pij = kBn(!r, t)T (!r, t) δij ≡ P (!r, t) δij (2.58)

and !q = 0. We can substitute these expressions into our three conservation laws. The

continuity equation (2.47) remains unchanged. Written in terms for ρ = mn, it reads
(

∂

∂t
+ uj

∂

∂rj

)

ρ+ ρ
∂ui

∂ri
= 0 (2.59)

Meanwhile, the equation (2.50) governing the velocity flow becomes the Euler equation
describing fluid motion

(

∂

∂t
+ uj

∂

∂rj

)

ui +
1

ρ

∂P

∂ri
=

Fi

m
(2.60)

and the final equation (2.56) describing the flow of heat reduces to
(

∂

∂t
+ uj

∂

∂rj

)

T +
2T

3

∂ui

∂ri
= 0 (2.61)

– 42 –



These set of equations describe the motion of an ideal fluid. While they are a good
starting point for describing many properties of fluid mechanics, there is one thing that

they are missing: dissipation. There is no irreversibility sown into these equations, no
mechanism for the fluid to return to equilibrium.

We may have anticipated that these equations lack dissipation. Their starting point
was the local equilibrium distribution (2.57) and we saw earlier that for such distribu-

tions Boltzmann’s H-function does not decrease; the entropy does not increase. In fact,
we can also show this statement directly from the equations above. We can combine

(2.59) and (2.60) to find

(

∂

∂t
+ uj

∂

∂rj

)

(ρT−2/3) = 0

which tells us that the quantity ρT−2/3 is constant along streamlines. But this is the

requirement that motion along streamlines is adiabatic, not increasing the entropy. To
see that this is the case, you need to go back to your earlier statistical mechanics or

thermodynamics course6. The usual statement is that for an ideal gas, an adiabatic
transformation leaves V T 2/3 constant. Here we’re working with the density ρ = mN/V

and this becomes ρT−2/3 is constant. Note, however, that in the present context ρ and
T are not numbers, but functions of space and time: we are now talking about a local
adiabatic change.

Sound Waves

It is also simple to show explicitly that one can set up motion in the ideal fluid that
doesn’t relax back down to equilibrium. We start with a fluid at rest, setting !u = 0
and ρ = ρ̄ and T = T̄ , with both ρ̄ and T̄ constant. We now splash it (gently). That

means that we perturb the system and linearise the resulting equations. We’ll analyse
these perturbations in Fourier modes and write

ρ(!r, t) = ρ̄+ δρ e−i(ωt−"k·"r) and T (!r, t) = T̄ + δT e−i(ωt−"k·"r) (2.62)

Furthermore, we’ll look for a particular kind of perturbation in which the fluid motion
is parallel to the perturbation. In other words, we’re looking for a longitudinal wave

!u(!r, t) = !̂k δu e−i(ωt−"k·"r) (2.63)

6See, for example, the discussion of the Carnot cycle in Section 4 of the lecture notes on Statistical
Physics: http://www.damtp.cam.ac.uk/user/tong/statphys.html
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The linearised versions of (2.59), (2.60) and (2.61) then read

ω

|!k|
δρ = ρ̄δu

ω

|!k|
δu =

kBT̄

mρ̄
δρ+

kB
m

δT

ω

|!k|
δT =

2

3
T̄ δu

There is one solution to these equations with zero frequency, ω = 0. These have δu = 0

while δρ = −ρ̄ and δT = T̄ . (Note that this notation hides a small ε. It really means
that δρ = −ερ̄ and δT = εT̄ . Because the equations are linear and homogeneous, you
can take any ε you like but, since we’re looking at small perturbations, it should be

small). This solution has the property that P = mnkBT is constant. But since, in
the absence of an external force, pressure is the only driving term in (2.60), the fluid

remains at rest, which is why δu = 0 for this solution.

Two further solutions to these equations both have δρ = ρ̄, δT = 2
3 T̄ and δu = ω/|!k|

with the dispersion relation

ω = ±vs|!k| with vs =

√

5kBT̄

3m
(2.64)

These are sound waves, the propagating version of the adiabatic change that we saw
above: the combination ρT−2/3 is left unchanged by the compression and expansion of

the fluid. The quantity vs is the speed of sound.

2.5 Transport with Collisions

While it’s nice to have derived some simple equations describing fluid mechanics, as

we’ve seen they’re missing dissipation. And, since the purported goal of these lectures
is to understand how systems relax back to equilibrium, we should try to see what

we’ve missed.

In fact, it’s clear what we’ve missed. Our first guess for the distribution function was

local equilibrium

f (0)
1 (!r, !p; t) = n(!r, t)

(

1

2πmkBT (!r, t)

)3/2

exp

(

−
m

2kBT (!r, t)
[(!v − !u(!r, t)]2

)

(2.65)

We chose this on the grounds that it gives a vanishing contribution to the collision

integral. But we never checked whether it actually solves the streaming terms in the
Boltzmann equation. And, as we will now show, it doesn’t.
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Using the definition of the Poisson bracket and the one-particle Hamiltonian H1

(2.11), we have

∂f (0)
1

∂t
− {H1, f

(0)
1 } =

∂f (0)
1

∂t
+ !F ·

∂f (0)
1

∂!p
+ !v ·

∂f (0)
1

∂!r

Now the dependence on !p = m!v in local equilibrium is easy: it is simply

∂f (0)
1

∂!p
= −

1

kBT
(!v − !u)f (0)

1

Meanwhile all !r dependence and t dependence of f (0)
1 lies in the functions n(!r, t), T (!r, t)

and !u(!r, t). From (2.65) we have

∂f (0)
1

∂n
=

f (0)
1

n

∂f (0)
1

∂T
= −

3

2

f (0)
1

T
+

m

2kBT 2
(!v − !u)2f (0)

1

∂f (0)
1

∂!u
=

m

kBT
(!v − !u)f (0)

1

Using all these relations, we have

∂f (0)
1

∂t
− {H1, f

(0)
1 } =

[

1

n
D̃tn+

(

m(!v − !u)2

2kBT 2
−

3

2T

)

D̃tT

+
m

kBT
(!v − !u) · D̃t!u−

1

kBT
!F · (!v − !u)

]

f (0)
1 (2.66)

where we’ve introduced the notation D̃t which differs from the material derivative Dt

in that it depends on the velocity !v rather than the average velocity !u,

D̃t ≡
∂

∂t
+ !v ·

∂

∂!r
= Dt + (!v − !u) ·

∂

∂!r

Now our first attempt at deriving hydrodynamics gave us three equations describing
how n (2.59), !u (2.60) and T (2.61) change with time. We substitute these into (2.66).

You’ll need a couple of lines of algebra, cancelling some terms, using the relationship
P = nkBT and the definition of Uij in (2.55), but it’s not hard to show that we

ultimately get

∂f (0)
1

∂t
− {H1, f

(0)
1 } =

[

1

T

(

m

2kBT
(!v − !u)2 −

5

2

)

(!v − !u) ·∇T (2.67)

+
m

kBT

(

(vi − ui)(vj − uj)−
1

3
(!v − !u)2δij

)

Uij

]

f (0)
1
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And there’s no reason that the right-hand-side is zero. So, unsurprisingly, f (0)
1 does

not solve the Boltzmann equation. However, the remaining term depends on ∇T and

∂!u/∂!r which means that we if we stick to long wavelength variations in the temperature
and velocity then we almost have a solution. We need only add a little extra something
to the distribution

f1 = f (0)
1 + δf1 (2.68)

Let’s see how this changes things.

2.5.1 Relaxation Time Approximation

The correction term, δf1, will contribute to the collision integral (2.24). Dropping the
!r argument for clarity, we have

(

∂f1
∂t

)

coll

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p1, !p2) [f1(!p

′
1)f1(!p

′
2)− f1(!p1)f1(!p2)]

=

∫

d3p2d
3p′1d

3p′2 ω(!p ′
1, !p

′
2|!p1, !p2)

[

f (0)
1 (!p ′

1)δf1(!p
′
2) + δf(!p ′

1)f
(0)
1 (!p ′

2)

−f (0)
1 (!p1)δf1(!p2)− δf(!p1)f

(0)
1 (!p2)

]

where, in the second line, we have used the fact that f (0)
1 vanishes in the collision

integral and ignored quadratic terms ∼ δf 2
1 . The resulting collision integral is a linear

function of δf1. But it’s still kind of a mess and not easy to play with.

At this point, there is a proper way to proceed. This involves first taking more care
in the expansion of δf1 (using what is known as the Chapman-Enskog expansion) and

then treating the linear operator above correctly. However, there is a much easier way
to make progress: we just replace the collision integral with another, much simpler

function, that captures much of the relevant physics. We take

(

∂f1
∂t

)

coll

= −
δf1
τ

(2.69)

where τ is the relaxation time which, as we’ve already seen, governs the rate of change
of f1. In general, τ could be momentum dependent. Here we’ll simply take it to be a

constant.

The choice of operator (2.69) is called the relaxation time approximation. (Sometimes
it is referred to as the Bhatnagar-Gross-Krook operator). It’s most certainly not exact.
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In fact, it’s a rather cheap approximation. But it will give us a good intuition for what’s
going on. With this replacement, the Boltzmann equation becomes

∂(f (0)
1 + δf1)

∂t
− {H1, f

(0)
1 + δf1} = −

δf1
τ

But, since δf1 1 f (0)
1 , we can ignore δf1 on the left-hand-side. Then, using (2.67), we

have a simple expression for the extra contribution to the distribution function

δf1 = −τ

[

1

T

(

m

2kBT
(!v − !u)2 −

5

2

)

(!v − !u) ·
∂T

∂!r

+
m

kBT

(

(vi − ui)(vj − uj)−
1

3
(!v − !u)2δij

)

Uij

]

f (0)
1 (2.70)

We can now use this small correction to the distribution to revisit some of the transport
properties that we saw in Section 1.

2.5.2 Thermal Conductivity Revisited

Let’s start by computing the heat flux

qi =
1

2
mρ〈(vi − ui) (!v − !u)2〉 (2.71)

using the corrected distribution (2.68). We’ve already seen that the local equilibrium

distribution f (0)
1 gave !q = 0, so the only contribution comes from δf1. Moreover, only

the first term in (2.70) contributes to (2.71). (The other is an odd function and vanishes

when we do the integral). We have

!q = −κ∇T

This is the same phenomenological law that we met in (1.12). The coefficient κ is the

thermal conductivity and is given by

κ =
mτρ

2T

∫

d3p (!vi − !ui)
2(!v − !u)2

[

m

2kBT
(!v − !u)2 −

5

2

]

f (0)
1

=
mτρ

6T

[

m

2kBT
〈v6〉0 −

5

2
〈v4〉0

]

In the second line, we’ve replaced all (v − u) factors with v by performing a (!r-

dependent) shift of the integration variable. The subscript 〈·〉0 means that these aver-
ages are to be taken in the local Maxwell-Boltzmann distribution f (0)

1 with u = 0. These
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integrals are simple to perform. We have 〈v4〉0 = 15k2
BT

2/m2 and 〈v6〉0 = 105k3
BT

3/m3,
giving

κ =
5

2
τnk2

BT

The factor of 5/2 here has followed us throughout the calculation. The reason for its
presence is that its the specific heat at constant pressure, cp =

5
2kB.

This result is parameterically the same that we found earlier in (1.13). (Although

you have to be a little careful to check this because, as we mentioned after (2.54),
the definition of heat flux differs and, correspondingly, κ, differs by a factor of m.
Moreover, the current formula is written in terms of slightly different variables. To

make the comparison, you should rewrite the scattering time as τ ∼ 1/mσn
√

〈v2〉,
where σ is the total cross-section and 〈v2〉 ∼ T/m by equipartition). The coefficient

differs from our earlier derivation, but it’s not really to be trusted here, not least
because the only definition of τ that we have is in the implementation of the relaxation
time approximation.

We can also see how the equation (2.56) governing the flow of temperature is related

to the more simplistic heat flow equation that we introduced in (1.14). For this we
need to assume both a static fluid !u = 0 and also that we can neglect changes in the
thermal conductivity, ∂κ/∂!r ≈ 0. Then equation (2.56) reduces to the heat equation

ρkB
∂T

∂t
= −

2

3
κ∇2T

2.5.3 Viscosity Revisited

Let’s now look at the shear viscosity. From our discussion in Section 1, we know that
the relevant experimental set-up is a fluid with a velocity gradient, ∂ux/∂z 2= 0. The
shear viscosity is associated to the flux of x-momentum in the z-direction. But this is

precisely what is computed by the off-diagonal component of the pressure tensor,

Pxz = ρ〈(vx − ux)(vz − uz)〉

We’ve already seen that the local equilibrium distribution gives a diagonal pressure
tensor (2.58), corresponding to vanishing viscosity. What happens if we use the cor-

rected distribution (2.68). Now only the second term in (2.70) contributes (since the
first term is gives an odd function of (v − u)). We write

Pij = P δij + Πij (2.72)
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where the extra term Πij is called the stress tensor and is given by

Πij =
mτρ

kBT
Ukl

∫

d3p (vj − uj)(vi − ui)

(

(vk − ul)(vk − ul)−
1

3
(!v − !u)2δkl

)

f (0)
1

=
mτρ

kBT
Ukl

[

〈vivjvkvl〉0 −
1

3
δkl〈vivjv

2〉0

]

Before we compute Πij , note that it is a traceless tensor. This is because the first
term above becomes 〈v2vkvl〉0 = δjk〈v2vxvx〉0 which is easily calculated to be 〈v2v2x〉0 =
5k2

BT
2/m2 = 1

3〈v
4〉0. Moreover, Πij depends linearly on the tensor Uij . These two facts

mean that Πij must be of the form

Πij = −2η

(

Uij −
1

3
δij∇ · !u

)

(2.73)

In particular, if we set up a fluid gradient with ∂ux/∂z 2= 0, we have

Πxz = −η
∂ux

∂z

which tells us that we should identify η with the shear viscosity. To compute it, we

return to a general velocity profile which, from (2.73), gives

Πxz =
mτρ

kBT
Ukl

[

〈vxvzvkvl〉0 −
1

3
δkl〈vxvzv

2〉0

]

=
mτρ

kBT
(Uxz + Uzx)〈vxvzvxvz〉0

=
2mτρ

15kBT
Uxz〈v

4〉0

Comparing to (2.73), we get an expression for the coefficient η,

η = nkBT τ

Once again, this differs from our earlier more naive analysis (1.11) only in the overall

numerical coefficient. And, once again, this coefficient is not really trustworthy due to
our reliance on the relaxation time approximation.

The scattering time τ occurs in both the thermal conductivity and the viscosity. Tak-

ing the ratio of the two, we can construct a dimensionless number which characterises
our system. This is called the Prandtl number,

Pr =
cpη

κ
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With cp the specific heat at constant pressure which takes the value cp = 5kB/2 for a
monatomic gas. Our calculations above give a Prandtl number Pr = 1. Experimental

data for monatomic gases shows a range of Prandtl numbers, hovering around Pr ≈ 2/3.
The reason for the discrepancy lies in the use of the relaxation time approximation. A
more direct treatment of the collision integral, thought of as a linear operator acting

on δf1, gives the result Pr = 2/3, in much better agreement with the data7.

2.6 A Second Look: The Navier-Stokes Equation

To end our discussion of kinetic theory, we put together our set of equations governing
the conservation of density, momentum and energy with the corrected distribution

function. The equation of motion for density fluctuations doe not change: it remains,

∂ρ

∂t
+∇ · (ρ!u) = 0 (2.74)

Meanwhile the equation for momentum (2.50) now has an extra contribution from the
stress tensor contribution (2.72). Moreover, we typically assume that, to leading order,
variations in the viscosity can be neglected: ∇η ≈ 0. Written in vector notation rather

than index notation, the resulting equation is

(

∂

∂t
+ !u ·∇

)

!u =
!F

m
−

1

ρ
∇P +

η

ρ
∇2!u+

η

3ρ
∇(∇ · !u) (2.75)

This is the Navier-Stokes equation. Finally, we have the heat conduction equation. We

again drop some terms on the grounds that they are small. This time, we set ∇κ ≈ 0
and UijΠij ≈ 0; both are small at the order we are working to. We’re left with

ρ

(

∂

∂t
+ !u ·∇

)

T −
2

3
κ∇2T +

2m

3
P ∇ · !u = 0

We can again look at fluctuations of these equations about a static fluid with ρ = ρ̄,
T = T̄ and !u = 0. Longitudinal fluctuations (2.62) and (2.63) now give rise to the

linearised equations of motion,

ωδρ = ρ̄|!k|δu

ωδu =
kBT̄

mρ̄
|!k|δρ+

kB
m

|!k|δT − i
4η|!k|2

3ρ̄
δu

ωδT =
2

3
T̄ |!k|δu− i

2κ|!k|2

3kBρ̄
δT

7You can read about this improved calculations in the lecture notes by Arovas. A link is given on
the course website.
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Notice that terms involving transport coefficients η and κ each come with a factor of
i; this is a sign that they will give rise to dissipation. To compute the frequencies of

the different modes, it’s best to think of this as an eigenvalue problem for ω/|!k|; the
coefficients of the various terms on the right-hand-side define a 3× 3 matrix M , with

detM =
2i

3

κ|!k|4T̄

mρ̄
and TrM = −i

(

4

3
η +

2

3

κ

kB

)

|!k|2

ρ̄

The product of the three eigenvalues is equal to detM . We know that for the ideal
fluid, the eigenvalues are zero and ω = ±vs|!k| where vs is the sound speed computed

in (2.64). Let’s first look at the eigenvalue that was zero, corresponding to fluctuations
of constant pressure. Working to leading order in κ and η, we must have

−v2s |!k|
2ω = detM ⇒ ω = −

2i

5

κ

kBρ̄
|!k|2

The purely imaginary frequency is telling us that these modes are damped. The ω ∼

i|!k|2 is characteristic of diffusive behaviour.

The remaining two modes are related to the sound waves. These too will gain a

dispersive contribution, now with

ω = ±vs|!k|− iγ (2.76)

Using the fact that the sum of the eigenvalues is equal to the trace, we find

γ =

(

2

3
η +

2

15

κ

kB

)

|!k|2

ρ̄
(2.77)

The fluctuations above are all longitudinal. There are also two shear modes, whose
fluctuations are in a direction perpendicular to the velocity. It is simple to check that

the linearised equations are solved by δρ = δT = 0 and δ!u ·!k, with the frequency given
by

ω = −i
η|!k|2

ρ̄

Once again, we see that these modes behave diffusively.

Navier Stokes Equation and Liquids

Our derivation of the Navier-Stokes equation relied on the dilute gas approximation.
However, the equation is more general than that. Indeed, it can be thought of as the
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most general expression in a derivative expansion for momentum transport (subject to
various requirements). In fact, there is one extra parameter that we could include:

ρ

(

∂

∂t
+ !u ·∇

)

!u =
ρ!F

m
−∇P + η∇2!u+

(η

3
+ ζ

)

∇(∇ · !u)

where ζ is the bulk viscosity which vanished in our derivation above. Although the

equation above governs transport in liquids, we should stress that first-principles com-
putations of the viscosity (and also thermal conductivity) that we saw previously only

hold in the dilute gas approximation.
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