Symbol	What it is	How it is read	How it is used	Sample expression
∮	Line integral sign	The line integral of	integration	$\oint_{\mathbf{F} \cdot \mathbf{dx}}$
$\mathscr{I}_{\scriptscriptstyle{\mathbb{S}}}$	Surface integral sign	The surface integral of	integration	$\iint_{\mathbb{S}F(x,y,z)dxdy}$
Π	Product sign	The product of	Product of three up to infinitely many values	$\prod_{n=1}^{\infty} \frac{1}{n}$
!	Exclamation	<u>factorial</u>	Product of all positive integers up to a certain value	5! = 120
%	Per mil symbol	per mil	Proportion	0.032 = 32 %
:	Colon, ratio sign	is to such that it is true that	Division or ratio, symbol following logical quantifier or used in defining a set	$2:4 = 20:40$ $\exists_{x: x > 4 \text{ and } x < 5}$ $\forall_{x: x < 0 \text{ or } x > -1}$ $S = \{x: x < 3\}$
I	Vertical line	such thatit is true that	Symbol following logical quantifier or used in defining a set	$\exists_{x \mid x > 4 \text{ and } x < 5}$ $\forall_{x \mid x < 0 \text{ or } x > -1}$ $S = \{x \mid x < 3\}$
::	Double colon	averaged with	arithmetic mean	3 :: 11 = 7
(]	Hybrid brackets	the half-open interval	Denotes a half-open interval	(3,5]
[)	Hybrid brackets	the half-open interval	Denotes a half-open interval	[3,5)
{ }	Curly brackets	the quantity the <u>set</u>	Denotes a quantity or a set	$E = \{2, 4, 6, 8,\}$
Ë	Existential quantifier	For some There exists a(n)	Logical statements	$\exists_{x:x>4 \text{ and } x<5}$
A	Universal quantifier	For all For every	Logical statements	$\forall x: x < 0 \text{ or } x > -1$
7	Logical negation	not	Logical statements	$\neg(\neg A) \iff A$

			1	
	symbol			
\Rightarrow	logical implication symbol	implies If then	Logical statements	A ⇒B
\Leftrightarrow	logical equivalence symbol	is logically equivalent to if and only if	Logical statements	A⇔B
8 5 05.	Three dots	therefore it follows that	Logical statements or mathematical proofs	x = y and $y = zx = z$
€	Element-of symbol	is an element of a set	Sets	<i>a</i> ∈A
∉	Not-element-of symbol	is not an element of a set	Sets	b ∉A
⊆	Subset symbol	is a subset of	Sets	A⊆B
С	Proper subset symbol	is a proper subset of	Sets	A ⊂B
U	Union symbol	union	Sets	$A \cup B = B \cup A$
n	Intersection symbol	intersect intersected with	Sets	$A \cap B = B \cap A$
Ø	Null symbol	The null set The empty set	Sets	Ø= { }
88	Hebrew aleph (uppercase)	Aleph	Transfinite cardinal	$\aleph_1 + \aleph_0 = \aleph_1$
Ω	Greek omega (uppercase)	omega	Volume of an object Ohms (resistance)	$R_2 = 330 \ \Omega$
N, N	Enhanced or bold <i>N</i>	The set of natural numbers	Number theory Set theory	N = {0, 1, 2, 3,}
\mathbb{Z}, \mathbb{Z}	Enhanced or bold Z	The set of integers	Number theory Set theory	Z = {0, 1, -1, 2, -2, 3, -3,}
Q,Q	Enhanced or bold Q	The set of rational numbers	Number theory Set theory	$\mathcal{Q} = \{a/b \mid a \text{ and } b \text{ are } in \mathbb{Z}\}$
\mathbb{R}, \mathbb{R}	Enhanced or bold <i>R</i>	The set of real numbers	Number theory Set theory	What is the cardinality of \mathbb{R} ?