Continuous Probability Distributions

Huining Kang
HuKang@salud.unm.edu
August 5, 2020

Overview

- Content
- Review discrete probability distribution
- Probability distributions of continuous variables
- The Normal distribution
- Objective
- Consolidate the understanding of the concepts related to probability distribution
- Understand the concepts related to the continuous probability distribution
- Understand the normal distribution and standard normal distribution. know how to calculate the probabilities of the events based on the standard normal distribution

Review of discrete probability distributions

- Example
- 10% of a certain population is color blind
- Draw a random sample of 5 people from the population, and let X be the number of people who are color blind among this sample.
- Questions
- What are the possible values that X assumes?
- What is the probability that X assumes each of the above possible values
- Solution
- X follows Binomial distribution Binomial (n, p), where $n=5, p=$ 0.1 , and $q=1-p=0.9$.

Posible values of X	x					
	0	1	2	3	4	5
Probability density function	q^{5}	$5 q^{4} p$	$10 q^{3} p^{2}$	$10 q^{2} p^{3}$	$5 q p^{4}$	p^{5}
$f(x)=P(X=x)$.5905	.3281	.0729	.0081	.0005	.0001
Cumulative distribution function	$F(0)$	$F(1)$	$F(2)$	$F(3)$	$F(4)$	$F(5)$
$F(x)=P(X \leq x)$.5905	.9185	.9914	.9995	.9999	1

- Probability density function

$$
f(x)=P(X=x)=\frac{n \cdot(n-1) \cdots(n-x+1)}{x!} q^{n-x} p^{x}, x=0,1,2,3,4,5 .
$$

Review of discrete probability distributions

- Solution
- X follows Binomial distribution $\operatorname{Binomial}(n, p)$, where $n=5, p=$ 0.1 , and $q=1-p=0.9$.

Posible values of X	x					
	0	1	2	3	4	5
Probability density function	q^{5}	$5 q^{4} p$	$10 q^{3} p^{2}$	$10 q^{2} p^{3}$	$5 q p^{4}$	p^{5}
$f(x)=P(X=x)$.5905	.3281	.0729	.0081	.0005	.0001
Cumulative distribution function	$F(0)$	$F(1)$	$F(2)$	$F(3)$	$F(4)$	$F(5)$
$F(x)=P(X \leq x)$.5905	.9185	.9914	.9995	.9999	1

$$
\begin{gathered}
f(x)=P(X=x)= \\
\frac{n \cdot(n-1) \cdots(n-x+1)}{x!} q^{n-x} p^{x} \\
x=0,1,2,3,4,5 .
\end{gathered}
$$

Review of discrete probability distributions

- What is the probability distribution of a discrete random variable?
- (From the textbook) is a table, graph, formula, or other device used to specify all possible values of a discrete random variable along with their respective probabilities.
- (Also from the textbook) is a device that can be used to describe the relationship between the values of a random variable and the probabilities of their occurrence.
- (From Wikipedia) is the mathematical function that gives the probabilities of different possible outcomes for an experiment.
- My definition
- The relationship between the possible outcomes (values of a random variable) and the probability of the their occurrence is referred to as the probability distribution.
- Probability distribution (of a random variable) may be expressed in the form of a table, graph or formula

Review of discrete probability distributions

- Why is it important?
- It can help us to calculate the probability of an event under more complex conditions.
- If you know the type of the probability distribution (e.g. binormial, Poisson, etc.), you can calculate the probability of an event using the tables or statistical software.
- Example
- What is the probability that at least one is color blind?

$$
P(X \geq 1)=1-P(X=0)=1-q^{5}=1-0.9^{5}=0.4095
$$

Stata command: disp 1 - binomial($5,0,0.1$)

- What is the probability that at least two are color blind?
$P(X \geq 2)=1-P(X \leq 1)=1-F(1)=1-0.9185=0.0815$
Stata command: disp 1 - binomial($5,1,0.1$)

Probability distributions of continuous variables

- Examples of the continuous random variable
- $X=$ the height of a randomly selected adult male from the US
- $T=$ time from the diagnosis to the death of a woman randomly selected from the patients with ovarian cancer.
- Characteristics
- Does not possess the gaps or interruptions
- Can take on an infinite number of possible values, corresponding to every value in an interval.
- X could be any value between 60 and 80 inches
- T can assume any positive values
- Challenge in the theory
- We cannot model the continuous random variables with the same methods as we used for the discrete random variables
- Tables or Histogram won't work for a continuous random variables
- There are some similarities, but we have to use different methods

Probability distributions of continuous variables

- If searching online with the key words distribution, height of US adult males, you may find something similar to the following graph

Distribution of the Adult Male Heights in the US

- Average is $\mu=70.9 \mathrm{in}$.
- Standard deviation is $\sigma=2.75$ in
- Impression

- It looks like a smooth version of a histogram
- The curve is a graph of certain function $y=f(x)$
- The values of the height with the curve that is high are more likely to occur than where it is low

Probability distributions of continuous variables

- Probability density function (pdf)
- Suppose X is a continuous random variable. If there exists a nonnegative function $f(x)$ such that for any interval $[a, b], P(a \leq X \leq b)$ is equal to the area under the graph of $f(x)$ enclosed by the two vertical lines at the point a and b and x-axis, then $f(x)$ is called the probability
 density function (pdf) of X
- Properties
- $f(x) \geq 0$
- Given a specific value c, $P(X=c)=0$.
- $P(a \leq X \leq b)=P(a<X<b)$
- The entire area under the graph of $f(x)$ and above x-axis is 1

- $P(-\infty<X<\infty)=1$

Probability distributions of continuous variables

- Cumulative distribution function (cdf)
- By definition the cumulative distribution function (cdf) $F(x)=$ $P(X \leq x)$ is the area enclosed by the graph of $f(x), x$-axis and the vertical line at point
- $F(x)=P(X \leq x)=P(-\infty<X \leq x)$

- Properties
- $x_{1}<x_{2}$, Then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$
- $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$

Probability distributions of continuous variables
 - Normal distribution

- Definition $X \sim N\left(\mu, \sigma^{2}\right)$
- pdf $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- cdf $\quad F(x)=P(X \leq x)$
- Mean $=\mu$, Variance $=\sigma^{2}$
- Properties
- Symmetric about its mean μ

$$
\begin{aligned}
& P(X \leq \mu)=P(\geq \mu)=0.5 \\
& P(X \leq \mu-a)=P(\geq \mu+a)
\end{aligned}
$$

- Mean $=$ median $=$ mode
- Area under the curve $=1$

Normal Distribution

- Properties
- 68-95-99.7 rule (for how much of the distribution is within 1,2 and $3 \sigma^{\prime} s$ from the center μ)

FIGURE 4.6.2 Subdivision of the area under the normal
curve (areas are approximate).

Normal Distribution

- Properties
- Normal distribution is completely determined by μ and σ.
- μ = location, σ : shape (page $118,10^{\text {th }} \mathrm{Ed}$)

FIGURE 4.6.3 Three normal distributions with different means but the same amount of variability.

FIGURE 4.6.4 Three normal distributions with different standard deviations but the same mean.

Standard Normal distribution

- Standard normal distribution
- $Z \sim N(0,1), \mu=0, \sigma=1$.
- pdf

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

- cdf

$$
\Phi(z)=P(Z \leq z)
$$

- $\Phi(z)=P(Z \leq z)$

Calculation of Standard Normal Distribution

- Stata function
- cdf of standard normal distribution: normal(z)
- pdf of standard normal distribution: normalden(z)

Example	Stata calculation
4.6.1 $\mathrm{P}(\mathrm{Z} \leq 2)=\Phi(2)$	$\begin{aligned} & . \text { disp normal(2) } \\ & .97724987 \end{aligned}$
4.6.2 $\mathrm{P}(-2.55<\mathrm{Z} \leq 2.55)=\Phi(2.55)-\Phi(-2.55)$	$\begin{aligned} & \text {. disp normal(2.55) - normal(-2.55) } \\ & .98922771 \end{aligned}$
4.6.3 $\mathrm{P}(-2.74<\mathrm{Z} \leq 1.53)=\Phi(1.53)-\Phi(-2.74)$	$\begin{aligned} & \text {. disp normal(1.53) - normal(-2.74) } \\ & .93391968 \end{aligned}$
4.6.4 $\mathrm{P}(\mathrm{Z} \geq 2.71)=1-\mathrm{P}(\mathrm{Z}<2.71)=1-\Phi(2.71)$	$\begin{aligned} & . \text { disp 1- normal(2.71) } \\ & .00336416 \end{aligned}$
4.6.5 $\mathrm{P}(0.84<\mathrm{Z} \leq 2.45)=\Phi(2.45)-\Phi(0.84)$	$\begin{aligned} & . \text { disp normal(2.45) - normal(.84) } \\ & .19331138 \end{aligned}$

Summary

- Reviewed
- Discrete probability distribution
- Learned
- Probability distributions of continuous variables
- The Normal distribution
- Objective
- Consolidate the understanding of the concepts related to probability distribution
- Understand the concepts related to the continuous probability distribution
- Understand the normal distribution and standard normal distribution know how to calculate the probabilities of the events based on the standard normal distribution

Homework

- Due Wednesday, August 19.
- Page 122 ($10^{\text {th }}$ Ed)
- Exercise 4.6.1
- Exercises 4.6.3-4.6.6. What relationship between $\Phi(\mathrm{x})$ and $\Phi(-\mathrm{x})$ is implied by these results. Please explain why it is true. (hint: using graph)
- Exercises 4.6.7-4.6.9.

