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Overview

• Content
• Review discrete probability distribution
• Probability distributions of continuous variables
• The Normal distribution

• Objective
• Consolidate the understanding of the concepts related to 

probability distribution
• Understand the concepts related to the continuous 

probability distribution
• Understand the normal distribution and standard normal 

distribution. know how to calculate the probabilities of the 
events based on the standard normal distribution 



Review of discrete probability distributions
• Example

• 10% of a certain population is color blind
• Draw a random sample of 5 people from the population, and let 𝑋𝑋 be 

the number of people who are color blind among this sample.
• Questions

• What are the possible values that 𝑋𝑋 assumes?
• What is the probability that X assumes each of the above possible values

• Solution
• 𝑋𝑋 follows Binomial distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝), where 𝑛𝑛 = 5, 𝑝𝑝 =

0.1, and 𝑞𝑞 = 1 − 𝑝𝑝 = 0.9.

Posible values of 𝑿𝑿
𝒙𝒙

0 1 2 3 4 5

Probability density function
𝑓𝑓 𝑥𝑥 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)

𝑞𝑞5 5𝑞𝑞4𝑝𝑝 10𝑞𝑞3𝑝𝑝2 10𝑞𝑞2𝑝𝑝3 5𝑞𝑞𝑝𝑝4 𝑝𝑝5

.5905 .3281 .0729 .0081 .0005 .0001

Cumulative distribution function
𝐹𝐹 𝑥𝑥 = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)

𝐹𝐹(0) 𝐹𝐹(1) 𝐹𝐹(2) 𝐹𝐹(3) 𝐹𝐹(4) 𝐹𝐹(5)

.5905 .9185 .9914 .9995 .9999 1

• Probability density function
𝑓𝑓 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 =

𝑛𝑛 ⋅ 𝑛𝑛 − 1 ⋯ (𝑛𝑛 − 𝑥𝑥 + 1)
𝑥𝑥!

𝑞𝑞𝑛𝑛−𝑥𝑥𝑝𝑝𝑥𝑥, 𝑥𝑥 = 0, 1, 2, 3, 4, 5.



Review of discrete probability distributions
• Solution

• 𝑋𝑋 follows Binomial distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛,𝑝𝑝), where 𝑛𝑛 = 5, 𝑝𝑝 =
0.1, and 𝑞𝑞 = 1 − 𝑝𝑝 = 0.9.

𝑓𝑓 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 =

𝑛𝑛 ⋅ 𝑛𝑛 − 1 ⋯ (𝑛𝑛 − 𝑥𝑥 + 1)
𝑥𝑥!

𝑞𝑞𝑛𝑛−𝑥𝑥𝑝𝑝𝑥𝑥,

𝑥𝑥 = 0, 1, 2, 3, 4, 5.

Posible values of 𝑿𝑿
𝒙𝒙

0 1 2 3 4 5

Probability density function
𝑓𝑓 𝑥𝑥 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)

𝑞𝑞5 5𝑞𝑞4𝑝𝑝 10𝑞𝑞3𝑝𝑝2 10𝑞𝑞2𝑝𝑝3 5𝑞𝑞𝑝𝑝4 𝑝𝑝5

.5905 .3281 .0729 .0081 .0005 .0001

Cumulative distribution function
𝐹𝐹 𝑥𝑥 = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)

𝐹𝐹(0) 𝐹𝐹(1) 𝐹𝐹(2) 𝐹𝐹(3) 𝐹𝐹(4) 𝐹𝐹(5)

.5905 .9185 .9914 .9995 .9999 1



Review of discrete probability distributions
• What is the probability distribution of a discrete random 

variable?
• (From the textbook) is a table, graph, formula, or other device used to 

specify all possible values of a discrete random variable along with 
their respective probabilities.

• (Also from the textbook) is a device that can be used to describe the 
relationship between the values of a random variable and the 
probabilities of their occurrence.

• (From Wikipedia) is the mathematical function that gives the 
probabilities of different possible outcomes for an experiment.

• My definition
• The relationship between the possible outcomes (values of a random 

variable) and the probability of the their occurrence is referred to as 
the probability distribution.

• Probability distribution (of a random variable) may be expressed in the 
form of a table, graph or formula



Review of discrete probability distributions
• Why is it important?

• It can help us to calculate the probability of an event under more 
complex conditions.

• If you know the type of the probability distribution (e.g. binormial, 
Poisson, etc.), you can calculate the probability of an event using the 
tables or statistical software.

• Example
• What is the probability that at least one is color blind?

𝑃𝑃 𝑋𝑋 ≥ 1 = 1 − 𝑃𝑃 𝑋𝑋 = 0 = 1 − 𝑞𝑞5 = 1 − 0.95 = 0.4095
Stata command: disp 1 – binomial(5, 0, 0.1)

• What is the probability that at least two are color blind?
𝑃𝑃 𝑋𝑋 ≥ 2 = 1 − 𝑃𝑃 𝑋𝑋 ≤ 1 = 1 − 𝐹𝐹 1 = 1 − 0.9185 = 0.0815
Stata command: disp 1 – binomial(5, 1, 0.1)



Probability distributions of continuous variables
• Examples of the continuous random variable

• 𝑋𝑋 = the height of a randomly selected adult male from the US
• 𝑇𝑇 = time from the diagnosis to the death of a woman randomly 

selected from the patients with ovarian cancer.

• Characteristics
• Does not possess the gaps or interruptions
• Can take on an infinite number of possible values, corresponding to 

every value in an interval.
• 𝑋𝑋 could be any value between 60 and 80 inches
• 𝑇𝑇 can assume any positive values

• Challenge in the theory
• We cannot model the continuous random variables with the same 

methods as we used for the discrete random variables
• Tables or Histogram won’t work for a continuous random variables

• There are some similarities, but we have to use different methods



Probability distributions of continuous variables
• If searching online with the key words distribution, height of 

US adult males, you may find something similar to the 
following graph

• Impression
• It looks like a smooth version of a histogram
• The curve is a graph of certain function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)
• The values of the height with the curve that is high are more likely 

to occur than where it is low 

• Average is 𝜇𝜇 = 70.9 in.
• Standard deviation is 
𝜎𝜎 = 2.75 in 
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Probability distributions of continuous variables

• Properties
• 𝑓𝑓 𝑥𝑥 ≥ 0
• Given a specific value 𝑐𝑐, 
𝑃𝑃 𝑋𝑋 = 𝑐𝑐 = 0.

• 𝑃𝑃 𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 = 𝑃𝑃(𝑎𝑎 < 𝑋𝑋 < 𝑏𝑏)
• The entire area under the graph 

of 𝑓𝑓 𝑥𝑥 and above x-axis is 1
• 𝑃𝑃(−∞ < 𝑋𝑋 < ∞) = 1
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• Probability density function (pdf)
• Suppose 𝑋𝑋 is a continuous random 

variable. If there exists a nonnegative 
function 𝑓𝑓(𝑥𝑥) such that for any 
interval [𝑎𝑎, 𝑏𝑏], 𝑃𝑃(𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏) is 
equal to the area under the graph of 
𝑓𝑓(𝑥𝑥) enclosed by the two vertical 
lines at the point 𝑎𝑎 and 𝑏𝑏 and 𝑥𝑥-axis, 
then 𝑓𝑓(𝑥𝑥) is called the probability 
density function (pdf) of 𝑋𝑋
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Probability distributions of continuous variables

• Cumulative distribution function (cdf)
• By definition the cumulative distribution function (cdf) 𝐹𝐹 𝑥𝑥 =
𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 is the area enclosed by the graph of 𝑓𝑓(𝑥𝑥), x-axis and the 
vertical line at point 

• 𝐹𝐹 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 = 𝑃𝑃(−∞ < 𝑋𝑋 ≤ 𝑥𝑥).
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• Properties
• 𝑥𝑥1 < 𝑥𝑥2, Then 𝐹𝐹 𝑥𝑥1 ≤ 𝐹𝐹(𝑥𝑥2)
• lim
𝑥𝑥→−∞

𝐹𝐹(𝑥𝑥) = 0, lim
𝑥𝑥→∞

𝐹𝐹(𝑥𝑥) = 1
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Probability distributions of continuous variables 
– Normal distribution

• Definition 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2)

• pdf

• cdf
• Mean = µ, Variance = σ 2

• Properties
• Symmetric about its mean µ

• Mean = median = mode
• Area under the curve = 1
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Normal Distribution

• Properties
• 68 – 95 – 99.7 rule (for how much of 

the distribution is within 1, 2 and 3σ’s
from the center µ)



Normal Distribution

• Properties
• Normal distribution is completely determined by µ and σ. 

• µ = location, σ : shape (page 118, 10th Ed)



Standard Normal distribution
• Standard normal distribution

• Z ~ N(0, 1),  µ = 0, σ = 1.
• pdf

• cdf

• Calculation of standard normal distribution
• Table of standard normal distribution function

(Page A38 - A39)
• Stata function

• cdf of standard normal distribution: normal(z)
• pdf of standard normal distribution: normalden(z)
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• Stata function
– cdf of standard normal distribution: normal(z)
– pdf of standard normal distribution: normalden(z)

Calculation of Standard Normal Distribution

Example Stata calculation

4.6.1  P(Z ≤ 2) = Ф(2) . disp normal(2)
.97724987

4.6.2 P(– 2.55 <  Z ≤ 2.55) = Ф(2.55) – Ф(– 2.55) . disp normal(2.55) - normal(-2.55)
.98922771

4.6.3 P(– 2.74<  Z  ≤ 1.53) = Ф(1.53) – Ф(–2.74) . disp normal(1.53) - normal(-2.74)
.93391968

4.6.4 P(Z  ≥ 2.71) = 1 – P(Z < 2.71) =1 – Ф(2.71) . disp 1- normal(2.71)
.00336416

4.6.5 P(0.84 <  Z  ≤ 2.45) = Ф(2.45)  – Ф(0.84) . disp normal(2.45) - normal(.84)
.19331138



Summary

• Reviewed
• Discrete probability distribution

• Learned
• Probability distributions of continuous variables
• The Normal distribution

• Objective
• Consolidate the understanding of the concepts related to 

probability distribution
• Understand the concepts related to the continuous 

probability distribution
• Understand the normal distribution and standard normal 

distribution know how to calculate the probabilities of the 
events based on the standard normal distribution 



Homework

• Due Wednesday, August 19.
• Page 122 (10th Ed)

• Exercise 4.6.1
• Exercises 4.6.3 – 4.6.6. What relationship between Φ(x) 

and Φ(–x) is implied by these results. Please explain why 
it is true. (hint: using graph)

• Exercises 4.6.7 – 4.6.9.
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