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Low cardiorespiratory fitness (CRF) is associated with increased risk of chronic diseases
and mortality; however, CRF assessment is usually not performed in many healthcare
settings. The purpose of this study is to extend previous work on a non—exercise test model
to predict CRF from health indicators that are easily obtained.

Participants were men and women aged 20 to 70 years whose CRF level was quantified with
a maximal or submaximal exercise test as part of the National Aeronautics and Space
Administration/Johnson Space Center (NASA, n =1863), Aerobics Center Longitudinal
Study (ACLS, n =46,190), or Allied Dunbar National Fitness Survey (ADNFS, n =1706).
Other variables included gender, age, body mass index, resting heart rate, and self-
reported physical activity levels.

All variables used in the multiple linear regression models were independently related to the
CRF in each of the study cohorts. The multiple correlation coefficients obtained within NASA,
ACLS, and ADNFS participants, respectively, were 0.81, 0.77, and 0.76. The standard error of
estimate (SEE) was 1.45, 1.50, and 1.97 metabolic equivalents (METs) (1 MET=3.5 ml O,
uptake - kilograms of body mass ' - minutes '), respectively, for the NASA, ACLS, and ADNFS
regression models. All regression models demonstrated a high level of cross-validity
(0.72<R<0.80). The highest cross-validation coefficients were seen when the NASA regression
model was applied to the ACLS and ADNFS cohorts (R=0.76 and R=0.75, respectively).

This study suggests that CRF may be accurately estimated in adults from a non—exercise test
model including gender, age, body mass index, resting heart rate, and self-reported

physical activity.
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Introduction
l ow cardiorespiratory fitness (CRF) is associated

with adverse metabolic risk factor profiles,'™
increased risk of cardiovascular disease, type 2
diabetes, and mortality.*~'° The strength of association
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between low CRF and mortality is comparable to that
between mortality and conventional health indicators
such as body weight, blood pressure, cholesterol level,
and smoking.®%!! Although CRF is an important
health indicator, fitness assessment is usually not per-
formed in many healthcare settings.

The decision to measure and evaluate health indica-
tors in most settings is likely influenced by the feasibility
and cost of measuring the parameter. Assessments of
body weight, blood pressure, cholesterol levels, and
smoking habits are relatively easy to obtain, and are
routinely obtained and used in patient counseling.
Absence of feasible assessment methods and consensus
guidelines for interpreting health-related CRF levels
may contribute to the lack of fitness evaluation in most
settings. Incorporation of CRF into individual risk
assessment might be more feasible if simple CRF assess-
ments are available.

The gold standard measure of CRF is maximal oxygen
uptake (VO,,..), typically expressed as follows: milliliters
of O, uptake - kilograms of body mass™~' - minutes™ ', or
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metabolic equivalents (METs), where 1 MET = 3.5 ml O,
uptake - kilograms of body mass ™' - minutes ™.

VO, can be assessed with direct or indirect pro-
cedures.'*!3 Direct measures provide the most precise
assessment of CRF and are obtained by ventilatory gas
analysis at maximal exertion during a graded exercise
ergometry test.!!* Indirect methods estimate VO, ..
from maximal exercise duration, the peak workload
and/or heart rate (HR) responses achieved during
submaximal or maximal exercise ergometry, or the
amount of time required to walk, jog, or run a specified
distance.'®>!'* However, both direct and indirect meth-
ods of assessing CRF may be impractical for regular use
in most settings.

An international group of experts in the areas of
physical activity and fitness assessment, epidemiology,
preventive medicine, and clinical exercise testing re-
viewed the precision and feasibility of a variety of
methods that might be used to quantify CRF in health-
care settings. Based on the review of the literature and
the clinical expertise of these experts, it was concluded
that the prediction of CRF from non-exercise test
regression models would be most appropriate for wide-
spread use in many healthcare settings if sufficient
validity was obtained with this method of assessment.
Non-exercise test models estimate VO,,,.. from the
regression of measured maximal oxygen uptake on
independent variables known to be predictive of CRF,
such as gender, age, body size, resting HR, and self-
reported habitual physical activity levels. This method
avoids the burden of exercise testing, while providing a
reasonably accurate estimation of CRF.'>~'7 The pur-
pose of this report is to extend a previous non—exercise
test model'® for estimating CRF. Additional analyses
were conducted, including cross-validation studies, in
expanded and new data sets.

Methods

Secondary analyses were performed on data previously ob-
tained in three large cohorts of adults. The samples were
from the National Aeronautics and Space Administration/
Johnson Space Center (NASA; Houston TX), collected from
1971 to 2002'81%; the Aerobics Center Longitudinal Study
(ACLS), collected from 1985 to 2000%1%; and the 1990 Allied
Dunbar National Fitness Survey (ADNFS).2? Participants pro-
vided informed consent to participate in their respective
cohort studies.

NASA Participants and Test Method

The NASA'®!9 participants include 1458 men and 405
women aged 20 to 70 years who elected to have a maximal
graded exercise stress test as part of their annual health
examination. All tests were performed on a treadmill using
the Bruce protocol. Maximal oxygen uptake was measured
with ventilatory gas analysis procedures that are described
elsewhere.!® The highest minute VO, observed during the

max

test was accepted as the VO,, . and then divided by 3.5 to
express CRF as METs. Participants were not using chrono-
tropic medication, and none had an abnormal ECG during
exercise. Participants are representative of the general
NASA/Johnson Space Center workforce, that is, college edu-
cated and largely comprised of non-Hispanic whites.

ACLS Participants and Test Method

The ACLS®!? participants included 35,826 men and 10,364
women aged 20 to 70 years who had a preventive medical
examination at the Cooper Clinic in Dallas TX. CRF was
quantified as maximal METs estimated from the final tread-
mill speed and grade!? of a symptom-limited maximal exer-
cise test using a modified Balke protocol.?! ACLS men and
women are predominantly non-Hispanic whites, well edu-
cated, and of middle and higher socioeconomic status.

ADNPFS Participants and Test Method

The ADNFS?° participants were 853 men and 853 women
aged 20 to 70 years. The sample is representative of the 30
parliamentary constituencies of England. CRF was estimated
during a submaximal treadmill test with ventilatory gas anal-
ysis of submaximal VO,,,,.. and a test endpoint of at least 85%
of age-predicted maximum HR.?® Submaximal VO, and
HR were used to extrapolate VOy,.x» Which was converted to
METs for use in the current analysis.

Non-Exercise Model Variables

All three databases include gender, age, measured height and
weight to compute body mass index (BMI; kg/m?), resting
HR, and self-reported physical activity levels (SR-PA). Physical
activity was assessed with different instruments in each study
sample. The ACLS SR-PA scale consists of five categories,
while the ADNFS and NASA SR-PA scales have six and eight
categories, respectively. The NASA and ADNFS SR-PA scales
were collapsed into five categories to provide a common
metric across the three databases (Table 1). The original
eight-category non-exercise test model'® was reanalyzed with
five-category scale data, and a slightly lower standard error of
estimate (SEE; 1.45 vs 1.49 METs) was found. Table 1 lists a
description of each of the five physical activity categories that
were used to guide the development of the SR-PA used in the
current analysis. Resting HR was obtained from the ECG after
5 minutes of rest in the recumbent or supine position.

Statistical Analysis

Multiple linear regression was used to develop a non—exercise
prediction model in each database. The dependent variable
was CRF expressed as METs. The independent variables were
gender (0O=female, 1=male), age (years), BMI, resting HR
(beats - minutes '), and the dummy-coded five-category
SR-PA scale according to the Pedhauzur method.?? Congru-
ence of the prediction models was examined by comparing
the regression parameters and model fit statistics.?> Congru-
ence was further examined by cross-validating each regression
equation within the other databases. Each regression equa-
tion was applied to the independent variables of the other two
databases to produce a non-exercise estimated measure of
CRF. Pearson product-moment correlations were used to
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Table 1. Description of five-category self-reported physical activity scale for each database

Activity Level NASA

ACLS

ADNFS

Level 1 (SR-PA-0) Little activity other than walking for

pleasure (0, 1, 2)*

Level 2 (SR-PA-1) Some regular participation in
modest physical activities
involving sports, recreational
activities (3, 4)*

Level 3 (SR-PA-2) Aerobic exercise such as run/walk
for 20 to 60 minutes per week
(5)*

Aerobic exercise such as run/walk
for 1 to 3 hours per week (6)*

Level 4 (SR-PA-3)

Level 5 (SR-PA-4) Aerobic exercise such as run/walk

for >3 hours per week (7)*

No activity

Participated in sporting or

Walk, jog, or run up to 10

Walk, jog, or run from 10

Walk, jog, or run >20

From 0 to 4 occasions of at least
moderate activity in past 4
weeks (1, 2)P

From 5 to 11 occasions of at
least moderate activity in past

leisure-time physical
4 weeks (3)°

activity other than
walking, jogging, or
running
=12 Occasions of moderate
miles per week activity in past 4 weeks (4)"
=12 Occasions of a mix of
moderate and vigorous
activities in past 4 weeks (5)°
=12 occasions of vigorous
activity in past 4 weeks (6)P

to 20 miles per week

miles per week

Original eight-category scale used by Jackson et al.'®
"Original ADNFS 6-category scale.2’

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar National Fitness Survey; NASA, National Aeronautics and Space
Administration/Johnson Space Center; SR-PA, self-reported physical activity.

examine the relationship between maximal METs estimated
from the regression equation and the criterion measure of
CRF within each database. The distribution of residual scores
(i.e., the difference between measured and estimated CRF)
was obtained for each equation and applied to the other
databases. The mean residual score was examined to identify
systematic errors in the CRF prediction. Data were analyzed in
2004.

Results

Demographic and SR-PA data that describe all cohorts
are shown in Tables 2 and 3. The men and women in
the three samples were similar in age, BMI, and resting
HR. The mean CRF of the NASA men was lower than
the ACLS and ADNFS men by about 0.59 and 1.63
METs, respectively. The SR-PA profile of the NASA and
ADNFS men showed they were more likely to be in the

higher SR-PA categories than the ACLS men. The
measured mean CRF of the NASA women was lower
than in ACLS and ADNFS women, but the difference
was small: 0.57 and 0.66 METs, respectively. The SR-PA
profiles of the ACLS and ADNFS women were similar,
whereas a higher proportion of NASA women reported
ratings in the high and very high categories.

Table 4 presents Pearson correlations between CRF
and all independent variables within each database. All
correlations were statistically significant (p <0.01), in-
dicating that each independent variable was related to
CRF. The highest correlations were found between CRF
and SR-PA.

Table 5 shows multiple regression analysis for each
database. All variables used in the model were indepen-
dently related to CRF in each of the study cohorts. The
multiple correlation coefficients (SEE) obtained within

Table 2. Demographic descriptive statistics (mean*SD) of men in each database and level of self-reported physical activity

Variable NASA ACLS ADNFS
Sample size (n) 1458 35,826 853

Age (years) 45.9+7.8 43.3£9.6 41.6%£13.3
Height (cm) 177.2+6.3 178.7+6.5 175.8+6.9
Weight (kg) 80.2+11.1 83.5+12.7 77.9+10.8
BMI (kg/mz) 25.5%3.1 26.3+3.7 25.2+3.2
Resting HR (beats/min) 64.9+10.5 60.9*+11.0 69.2+10.8
Maximal METs 10.98%2.30 11.57+2.17 12.61£2.94
Maximal HR (beats/min) 176.4+11.4 178.8£12.8

RER 1.23+0.11

SR-PA-0 (inactive) 16.1% 37.2% 24.3%
SR-PA-1 (low) 29.6% 18.2% 21.3%
SR-PA-2 (moderate) 20.5% 27.2% 23.9%
SR-PA-3 (high) 17.8% 11.4% 15.4%
SR-PA-4 (very high) 16.0% 6.0% 15.1%

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar National Fitness Survey; BMI, body mass index; HR, heart rate; MET,
metabolic equivalent; NASA, National Aeronautics and Space Administration/Johnson Space Center; RER, respiratory exchange ratio; SD,

standard deviation; SR-PA, self-reported physical activity.
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Table 3. Demographic descriptive statistics (mean*SD) of women in each database and level of self-reported physical activity

Variable NASA ACLS ADNFS
Sample size (n) 401 10,364 853

Age (years) 39.5+9.6 42.4%+10.3 41.4*+13.2
Height (cm) 164.0+6.2 164.5+6.1 162.2+6.3
Weight (kg) 64.1+11.5 61.7+11.3 64.9+11.3
BMI (kg/m?) 23.8+4.0 22.8+3.9 24.7+4.1
Resting HR (beats/min) 60.0£10.4 64.3+11.0 72.3+10.5
Maximal METs 9.03+2.35 9.60+2.39 9.69+2.38
Maximal HR (beats/min) 178.4+12.0

RER 1.26x0.10

SR-PA-0 (inactive) 22.2% 33.9% 25.3%
SR-PA-1 (low) 21.9% 21.6% 27.9%
SR-PA-2 (moderate) 19.4% 28.7% 29.8%
SR-PA-3 (high) 21.5% 11.1% 11.5%
SR-PA-4 (very high) 15.0% 4.7% 5.5%

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar National Fitness Survey; BMI, body mass index; HR, heart rate; MET,
metabolic equivalent; NASA, National Aeronautics and Space Administration/Johnson Space Center; RER, respiratory exchange ratio; SD,

standard deviation; SR-PA, self-reported physical activity.

NASA, ACLS, and ADNFS participants, respectively,
were 0.81 (1.45 METs), 0.77 (1.50 METs), and 0.76
(1.97 METs). Table 5 includes regression weights of
each independent variable, which were identical for
BMI, while SR-PA demonstrated the greatest variance
among the three cohorts. Although the regression
weights were similar between the NASA and ACLS
model, the ANDEFS regression weights for SR-PA were
consistently lower compared with the other two models.
The NASA and ACLS differences in SR-PA categories
ranged from 0.02 METs for SR-PA-4 to 0.49 METs for
SR-PA-1.

To further examine the cross-validity of each of the
regression models, correlations were computed be-
tween estimated MET levels of CRF from each model
and the measured MET value within each cohort
(Table 6). The mean residual score for each regression
model applied within each of the cohorts (Table 6) was
also computed. The cross-validation correlations were
lower than the multiple regression correlations re-
ported in Table 5. When the NASA regression model
was applied to the ACLS and ADNFS data, Pearson
product-moment correlations of 0.76 and 0.75, respec-
tively, were observed. These correlations were 0.01
correlation units less than the respective multiple re-

Table 4. Pearson correlations between cardiorespiratory
fitness and nonexercise independent variables

Variable NASA ACLS ADNFS
Gender (F=0; M=1) 0.32* 0.35* 0.48*
Age (years) —0.35% —0.33* —0.51%
BMI (kg/m?) —0.33%* —0.26%* —0.287*
Resting HR (beats/min) —0.39* —0.42% —-0.23*
SR-PA 0.58%* 0.48* 0.32*

*p < 0.01 (bolded).

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar
National Fitness Survey; BMI, body mass index; F, female; HR, heart
rate; M, male; NASA, National Aeronautics and Space Administra-
tion/Johnson Space Center; SR-PA, self-reported physical activity.

gression correlations observed in each cohort. Each of
the regression models demonstrated reasonably high
levels of validity as seen by relatively small prediction
errors when a given regression model was applied
within the other two cohorts. The NASA regression
model underestimated CRF in the ACLS and ADNFS
cohorts by 0.67 and 1.37 METs, respectively. In con-
trast, the ADNFS model systematically overestimated
CRF in the NASA and ACLS cohorts by 1.03 and 0.56
METs, respectively. The NASA model showed the high-
est cross-correlations and lowest SEE. Thus, a score
sheet (Figure 1) was developed to predict CRF from the
regression coefficients of the NASA prediction model
(Table 5).

Discussion

CREF is a strong independent predictor of all-cause and
cause-specific mortality in asymptomatic individuals as
well as in individuals with existing metabolic or cardio-
vascular disease.®?!! In spite of having a similar relative
and attributable risk of mortality as regularly monitored
health indicators,®!! feasibility issues limit assessment
of CRF in many healthcare settings. The purpose of the
current study was to expand previous work!® on a
non-exercise test model to predict CRF. Jackson et
al.'® reported the precision of a non—exercise predic-
tion model based on gender, age, BMI, and SR-PA in a
homogeneous cohort of men and women. This model
was cross-validated on a cohort of hypertensive men
and women.!® In the current study, data were used
from three cohorts, including a larger group of indi-
viduals from the NASA cohort where the original
regression model was developed. Resting HR was added
as an independent variable and the original eight-
category SR-PA scale was collapsed into a simpler
five-category scale with more generalizable categories.
Each of the three non—exercise models was congruent
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Table 5. Non-exercise regression analysis with MET levels of maximal cardiorespiratory fitness as dependent variable for

each database

NASA ACLS ADNFS
Dependent variable Measured METs Estimated METSs Estimated METSs
Exercise test protocol Maximal Maximal Submaximal
Intercept 18.07* 18.81* 21.41%
Gender (F=0; M=1) 2.77* 2.49* 2.78%*
Age (years) —0.10* —0.08* —0.11%
BMI (kg/m?) —0.17* -0.17* —0.17*
Resting HR (beats/min) —0.03* —0.05* —0.05*
SR-PA-1 (low) 0.32% 0.81%* 0.35%
SR-PA-2 (moderate) 1.06* 1.17* 0.29%*
SR-PA-3 (high) 1.76* 2.16* 0.64°*
SR-PA-4 (very high) 3.03%* 3.05% 1.21%
R 0.81%* 0.77* 0.76*
R2? 0.65 0.60 0.58
SEE 1.45 1.50 1.97

%p < 0.01 (bolded).

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar National Fitness Survey; BMI, body mass index; F, female; HR, heart rate; M,

male; MET, metabolic equivalent (1 MET=3.5 ml O, uptake -

kg body mass™

' . min~'); NASA, National Aeronautics and Space

Administration/Johnson Space Center; R, multiple correlation coefficient; SEE, standard error of estimate; SR-PA, self-reported physical activity.

and generalizable within each of the cohorts. The
current NASA regression model showed a slightly bet-
ter model fit compared with the previously reported
prediction equation'® (R=0.81 vs R=0.78).

Among the three prediction models in the current
study, the NASA model showed the highest multiple
correlation and lowest standard error compared with
the equations derived in the ACLS and ADNFS. This is
likely explained by differences in the dependent vari-
able for each database. In the NASA cohort, CRF was
measured with the gold standard method of ventilatory
gas analysis at maximal exertion during a graded tread-
mill exercise test. In the other two cohorts, CRF was
estimated from the maximal workload achieved
(ACLS) or from submaximal responses (ADNFS) dur-
ing treadmill exercise testing. Nonetheless, the cross-
cohort validity and generalizability of each regression
model within the two remaining cohorts were reason-
ably high, and indicate that a good estimate of CRF can
be obtained from the independent variables of gender,
age, BMI, resting HR, and SR-PA habits, whether mea-
sured or estimated CRF was used as the dependent
variable in developing the prediction model. Because
each of these predictor variables is easily obtained, it is

believed that non—exercise test methods of predicting
CRF should become a routine component of primary
healthcare examinations.

If CRF were to be assessed in healthcare settings,
there must be a meaningful way to interpret the results
for the purposes of risk stratification and individual
counseling. Clinical measurements are more useful as
prognostic indicators when a specified level of the
parameter being measured identifies a threshold of
increased risk for adverse health outcomes.?® Cur-
rently, there is no complete consensus on a level of CRF
that classifies an asymptomatic individual as high risk,
nor is there agreement as to what level of CRF is
sufficient in the context of health and disease preven-
tion. However, results from four large prospective
studies suggest that 9 to 10 METs for men and 7 to 8
MET: for women is a MET level associated with a =50%
reduction in mortality risk.!®?*-27 Identification of
clinically useful CRF values for detecting individuals
with elevated mortality risk can not be based solely on
a relative measure of association,?® but such observa-
tions may reveal a fitness level that can be subjected to
more rigorous and clinically relevant sensitivity and
specificity assessment such as receiver-operating char-

Table 6. Cross-validation analysis of nonexercise equations applied to other databases

Cross-validity Residual score

Regression model Data source correlation 95% CI (METs) 95% CI

NASA ACLS 0.76 0.75-0.77 0.67 0.66-0.69
NASA ADNFS 0.75 0.72-0.78 1.37 1.26-1.48
ACLS NASA 0.80 0.77-0.82 —0.45 —0.54 to —0.36
ACLS ADNFS 0.74 0.71-0.77 1.06 0.95-1.17
ADNFS NASA 0.76 0.74-0.80 —1.03 —1.11 to —0.95
ADNFS ACLS 0.72 0.71-0.73 —0.56 —0.58 to —0.55

ACLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar National Fitness Survey; CI, confidence interval; MET, metabolic equivalent;
NASA, National Aeronautics and Space Administration/Johnson Space Center.
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Name: Date:

STEP 1

Physical activity score: Choose one activity category that best describes your usual pattern of daily
physical activities, including activities related to house and family care, transportation, occupation,
exercise and wellness, and leisure or recreational purposes.

Score
Level 1: Inactive or little activity other than usual daily activities. 0.00
Level 2: Regularly (=5 d/wk) participate in physical activities requiring low levels of exertion 0.32
that result in slight increases in breathing and heart rate for at least 10 minutes at a time.
Level 3: Participate in aerobic exercises such as brisk walking, jogging or running, cycling, 1.06
swimming, or vigorous sports at a comfortable pace or other activities requiring similar levels of
exertion for 20 to 60 minutes per week.
Level 4: Participate in aerobic exercises such as brisk walking, jogging or running at a 1.76
comfortable pace, or other activities requiring similar levels of exertion for 1 to 3 hours per
week.
Level 5: Participate in aerobic exercises such as brisk walking, jogging or running at a 3.03
comfortable pace, or other activities requiring similar levels of exertion for over 3 hours per
week.
STEP 2

Estimate MET level of cardiorespiratory fitness

Enter 0 for women or 1 for men |:| x2.77 = |:|
minus
Enter age in years l:l x0.10 = |:|
minus
Enter body mass index” L Ixor =[]
minus
Enter resting heart rate l:\ x 0.03 =

us

i

Enter physical activity score from step 1 |:| x 1.00 =
plus
Constant 18.07

I

Estimated MET value

Clinical relevance of selected maximal MET levels of cardiorespiratory fitness®

1 MET Resting metabolic rate; sitting quietly in a chair

<3 METs Severely limited functional capacity; a criteria for placement on a heart
transplant list

3-5 METs Poor prognosis in coronary patients; highly deconditioned individual

10 METs Good prognosis in coronary patients on medical therapy; approximate
maximal capacity expected in regularly active middle-aged men and women
13 METs Excellent prognosis regardless of disease status

18 METs Elite endurance athletes
20 METs World-class athletes

Figure 1. Worksheet for estimating maximal MET levels of cardiorespiratory fitness from routinely collected clinical data.
“Body mass index= (weight in lbs X 703)/ (height in inches)? or (weight in kilograms) / (height in meters)?. bAdapted from the
American Heart Association.?5%% MET, metabolic equivalent.
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acteristic analysis.?® Additional work is needed to place
CRF levels into clinical relevance similar to guidelines
that currently exist for blood pressure, lipids, glucose,
and body weight.?9 =32

There are three reasons for establishing a criterion
level of CREF. First, low CRF carries the same or higher
strength of association and attributable risk for mortal-
ity as routinely measured clinical risk factors.®%!! Sec-
ond, because increases in CRF are often accompanied
by favorable changes in other health indicators such as
blood pressure, triglycerides, glycemic control, and
body fat distribution,*** identifying and intervening
on low CRF may have additional health benefits beyond
the attributable fraction of mortality risk that has been
reported for low fitness. Third, there is a growing
urgency for additional clinical measures to improve
traditional approaches of identifying the high-risk
asymptomatic patient who would benefit from intensive
primary preventive therapy.”® Three recent studies
showed that measures of CRF provided added prognos-
tic value to conventional clinical risk assessment meth-
ods such as the Framingham risk score and echocardi-
ography.*®=*® However, the actual feasibility for use of
predicting CRF from non-exercise testing methods in
a variety of healthcare settings needs to be determined.

To help facilitate an efficient use of the non—exercise
test prediction model reported here, a worksheet was
developed to compute an individual’s CRF level (Figure
1). The worksheet can serve as the focus of individual
counseling on improving or maintaining CRF. Because
the NASA equation had a slightly lower SEE, the
regression coefficients from the NASA model were used
in the worksheet. Suppose one is interested in quanti-
fying the CRF level of a 45-year-old male who weighs
193 pounds (87.7 kg), is 68 inches (172 cm) tall, and
has a resting HR of 72 beats per minute with a usual
pattern of daily physical activity reported as Level 2.
After entering all values in the worksheet, the estimated
maximal MET level of CRF for this person is 9.02 METs.
Based on available data,'®**=27 this man likely has an
acceptable level of CRF in terms of risk for premature
mortality.

When a concerningly low level of CRF is identified,
the following counseling should be considered. The
major determinant of CRF is the degree to which one is
regularly active over recent weeks and months, al-
though a genetic component also exists.***” Indeed, in
each cohort of the current analysis the independent
variable with the strongest association with CRF deter-
mined from exercise testing was SR-PA level (Table 5).
Current public health®*!' and clinical guidelines*? rec-
ommend the accumulation of =30 minutes of at least
moderate-intensity physical activity on =5 days of the
week, and this is sufficient to improve low CRF. How-
ever, physical activity is similar to other therapeutic
agents with dose-response characteristics, wherein a
minimal dose that has proven efficacy and safety is

What This Study Adds . . .

Precise assessment of cardiorespiratory fitness is
obtained by ventilatory gas analysis at maximal
exertion.

However, the prediction of fitness from non-
exercise models seems most appropriate for wide-
spread use in many healthcare settings.

This study expanded previous work on non-
exercise test model to predict fitness by conduct-
ing additional analyses on large cohorts.

Results suggest that fitness may be assessed
from a non-exercise model, including gender,
age, body mass index, resting heart rate, and
self-reported physical activity.

typically prescribed as the initial dose. Interindividual
responses and differences in the specificity and severity
of the risk factor being addressed often dictate that the
dose of the therapeutic agent be titrated to maximize
its effectiveness. These considerations also apply for
physical activity interventions, to which interindividual
physiological responses are documented.** Thus, more
physical activity may be required for some individuals to
improve their CRF or other risk factor levels. It might
be argued that solely a measure of physical activity may
be more feasible to identify high-risk patients than the
non-exercise estimate of CRF given the limited time for
counseling. No compelling data was found to evaluate
which exposure, physical activity or estimated CRF, is a
more important determinant of health outcomes. How-
ever, steeper gradients or stronger associations have
been shown between measured CRF, as compared with
SR-PA, and health outcomes.** It was assumed that the
stronger association for CRF was due primarily to less
misclassification than on the activity measure. However,
the precision of non-exercise test estimates of CRF as
predictors of health outcomes has yet to be examined.

Limitations of this study include population charac-
teristics, such as heterogeneity in race/ethnic distribu-
tions, cross-sectional design that prevents an analysis of
whether changes in CRF can be detected, and lack of
consensus in the literature regarding definition of an
acceptable level of CRF for risk reduction. Strengths of
the study include compelling data on the importance of
CREF for risk assessment, use of three different popula-
tions to test the model, and acceptable cross-validation
of the model.

Data presented here indicate that CRF may be as-
sessed from a non-exercise test model including gen-
der, age, BMI, resting HR, and SR-PA. Such a model is
valid across diverse population cohorts. Additional
work is needed to assess the actual feasibility of this
approach in primary care and other settings, to verify
the validity of non-exercise estimates of CRF as predic-
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tors of health outcomes and to establish a target level of
CRF for primary prevention.
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