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ssessing Cardiorespiratory Fitness Without
erforming Exercise Testing

adim Jurca, PhD, Andrew S. Jackson, PED, Michael J. LaMonte, PhD, MPH, James R. Morrow Jr., PhD,
teven N. Blair, PED, Nicholas J. Wareham, MBBS, PhD, William L. Haskell, PhD,
illem van Mechelen, MD, PhD, Timothy S. Church, MD, MPH, PhD, John M. Jakicic, PhD,
aija Laukkanen, PhD

ackground: Low cardiorespiratory fitness (CRF) is associated with increased risk of chronic diseases
and mortality; however, CRF assessment is usually not performed in many healthcare
settings. The purpose of this study is to extend previous work on a non–exercise test model
to predict CRF from health indicators that are easily obtained.

ethods: Participants were men and women aged 20 to 70 years whose CRF level was quantified with
a maximal or submaximal exercise test as part of the National Aeronautics and Space
Administration/Johnson Space Center (NASA, n �1863), Aerobics Center Longitudinal
Study (ACLS, n �46,190), or Allied Dunbar National Fitness Survey (ADNFS, n �1706).
Other variables included gender, age, body mass index, resting heart rate, and self-
reported physical activity levels.

esults: All variables used in the multiple linear regression models were independently related to the
CRF in each of the study cohorts. The multiple correlation coefficients obtained within NASA,
ACLS, and ADNFS participants, respectively, were 0.81, 0.77, and 0.76. The standard error of
estimate (SEE) was 1.45, 1.50, and 1.97 metabolic equivalents (METs) (1 MET�3.5 ml O2
uptake · kilograms of body mass�1 · minutes�1), respectively, for the NASA, ACLS, and ADNFS
regression models. All regression models demonstrated a high level of cross-validity
(0.72�R�0.80). The highest cross-validation coefficients were seen when the NASA regression
model was applied to the ACLS and ADNFS cohorts (R�0.76 and R�0.75, respectively).

onclusions: This study suggests that CRF may be accurately estimated in adults from a non–exercise test
model including gender, age, body mass index, resting heart rate, and self-reported
physical activity.
(Am J Prev Med 2005;29(3):185–193) © 2005 American Journal of Preventive Medicine
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ow cardiorespiratory fitness (CRF) is associated
with adverse metabolic risk factor profiles,1–3

increased risk of cardiovascular disease, type 2
iabetes, and mortality.4–10 The strength of association
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ute for Research in Extramural Medicine and Department of Public
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etween low CRF and mortality is comparable to that
etween mortality and conventional health indicators
uch as body weight, blood pressure, cholesterol level,
nd smoking.8,9,11 Although CRF is an important
ealth indicator, fitness assessment is usually not per-

ormed in many healthcare settings.
The decision to measure and evaluate health indica-

ors in most settings is likely influenced by the feasibility
nd cost of measuring the parameter. Assessments of
ody weight, blood pressure, cholesterol levels, and
moking habits are relatively easy to obtain, and are
outinely obtained and used in patient counseling.
bsence of feasible assessment methods and consensus
uidelines for interpreting health-related CRF levels
ay contribute to the lack of fitness evaluation in most

ettings. Incorporation of CRF into individual risk
ssessment might be more feasible if simple CRF assess-
ents are available.
The gold standard measure of CRF is maximal oxygen

ptake (V̇O2max), typically expressed as follows: milliliters

f O2 uptake · kilograms of body mass�1 · minutes�1, or

1850749-3797/05/$–see front matter
Elsevier Inc. doi:10.1016/j.amepre.2005.06.004
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etabolic equivalents (METs), where 1 MET � 3.5 ml O2

ptake · kilograms of body mass�1 · minutes�1.
V̇O2max can be assessed with direct or indirect pro-

edures.12,13 Direct measures provide the most precise
ssessment of CRF and are obtained by ventilatory gas
nalysis at maximal exertion during a graded exercise
rgometry test.12,14 Indirect methods estimate V̇O2max

rom maximal exercise duration, the peak workload
nd/or heart rate (HR) responses achieved during
ubmaximal or maximal exercise ergometry, or the
mount of time required to walk, jog, or run a specified
istance.13,14 However, both direct and indirect meth-
ds of assessing CRF may be impractical for regular use

n most settings.
An international group of experts in the areas of

hysical activity and fitness assessment, epidemiology,
reventive medicine, and clinical exercise testing re-
iewed the precision and feasibility of a variety of
ethods that might be used to quantify CRF in health-

are settings. Based on the review of the literature and
he clinical expertise of these experts, it was concluded
hat the prediction of CRF from non–exercise test
egression models would be most appropriate for wide-
pread use in many healthcare settings if sufficient
alidity was obtained with this method of assessment.
on–exercise test models estimate V̇O2max from the

egression of measured maximal oxygen uptake on
ndependent variables known to be predictive of CRF,
uch as gender, age, body size, resting HR, and self-
eported habitual physical activity levels. This method
voids the burden of exercise testing, while providing a
easonably accurate estimation of CRF.15–17 The pur-
ose of this report is to extend a previous non–exercise
est model15 for estimating CRF. Additional analyses
ere conducted, including cross-validation studies, in
xpanded and new data sets.

ethods

econdary analyses were performed on data previously ob-
ained in three large cohorts of adults. The samples were
rom the National Aeronautics and Space Administration/
ohnson Space Center (NASA; Houston TX), collected from
971 to 200218,19; the Aerobics Center Longitudinal Study
ACLS), collected from 1985 to 20009,10; and the 1990 Allied
unbar National Fitness Survey (ADNFS).20 Participants pro-

ided informed consent to participate in their respective
ohort studies.

ASA Participants and Test Method

he NASA18,19 participants include 1458 men and 405
omen aged 20 to 70 years who elected to have a maximal
raded exercise stress test as part of their annual health
xamination. All tests were performed on a treadmill using
he Bruce protocol. Maximal oxygen uptake was measured
ith ventilatory gas analysis procedures that are described

lsewhere.15 The highest minute V̇O2max observed during the C

86 American Journal of Preventive Medicine, Volume 29, Num
est was accepted as the V̇O2max and then divided by 3.5 to
xpress CRF as METs. Participants were not using chrono-
ropic medication, and none had an abnormal ECG during
xercise. Participants are representative of the general
ASA/Johnson Space Center workforce, that is, college edu-

ated and largely comprised of non-Hispanic whites.

CLS Participants and Test Method

he ACLS9,10 participants included 35,826 men and 10,364
omen aged 20 to 70 years who had a preventive medical
xamination at the Cooper Clinic in Dallas TX. CRF was
uantified as maximal METs estimated from the final tread-
ill speed and grade14 of a symptom-limited maximal exer-

ise test using a modified Balke protocol.21 ACLS men and
omen are predominantly non-Hispanic whites, well edu-
ated, and of middle and higher socioeconomic status.

DNFS Participants and Test Method

he ADNFS20 participants were 853 men and 853 women
ged 20 to 70 years. The sample is representative of the 30
arliamentary constituencies of England. CRF was estimated
uring a submaximal treadmill test with ventilatory gas anal-
sis of submaximal V̇O2max and a test endpoint of at least 85%
f age-predicted maximum HR.20 Submaximal V̇O2max and
R were used to extrapolate V̇O2max, which was converted to
ETs for use in the current analysis.

on–Exercise Model Variables

ll three databases include gender, age, measured height and
eight to compute body mass index (BMI; kg/m2), resting
R, and self-reported physical activity levels (SR-PA). Physical

ctivity was assessed with different instruments in each study
ample. The ACLS SR-PA scale consists of five categories,
hile the ADNFS and NASA SR-PA scales have six and eight
ategories, respectively. The NASA and ADNFS SR-PA scales
ere collapsed into five categories to provide a common
etric across the three databases (Table 1). The original

ight-category non–exercise test model15 was reanalyzed with
ve-category scale data, and a slightly lower standard error of
stimate (SEE; 1.45 vs 1.49 METs) was found. Table 1 lists a
escription of each of the five physical activity categories that
ere used to guide the development of the SR-PA used in the
urrent analysis. Resting HR was obtained from the ECG after
minutes of rest in the recumbent or supine position.

tatistical Analysis

ultiple linear regression was used to develop a non–exercise
rediction model in each database. The dependent variable
as CRF expressed as METs. The independent variables were
ender (0�female, 1�male), age (years), BMI, resting HR
beats · minutes�1), and the dummy-coded five-category
R-PA scale according to the Pedhauzur method.22 Congru-
nce of the prediction models was examined by comparing
he regression parameters and model fit statistics.22 Congru-
nce was further examined by cross-validating each regression
quation within the other databases. Each regression equa-
ion was applied to the independent variables of the other two
atabases to produce a non–exercise estimated measure of

RF. Pearson product-moment correlations were used to

ber 3
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xamine the relationship between maximal METs estimated
rom the regression equation and the criterion measure of
RF within each database. The distribution of residual scores
i.e., the difference between measured and estimated CRF)
as obtained for each equation and applied to the other
atabases. The mean residual score was examined to identify
ystematic errors in the CRF prediction. Data were analyzed in
004.

esults

emographic and SR-PA data that describe all cohorts
re shown in Tables 2 and 3. The men and women in
he three samples were similar in age, BMI, and resting
R. The mean CRF of the NASA men was lower than

he ACLS and ADNFS men by about 0.59 and 1.63
ETs, respectively. The SR-PA profile of the NASA and
DNFS men showed they were more likely to be in the

able 1. Description of five-category self-reported physical ac

ctivity Level NASA

evel 1 (SR-PA-0) Little activity other than walking for
pleasure (0, 1, 2)a

evel 2 (SR-PA-1) Some regular participation in
modest physical activities
involving sports, recreational
activities (3, 4)a

evel 3 (SR-PA-2) Aerobic exercise such as run/walk
for 20 to 60 minutes per week
(5)a

evel 4 (SR-PA-3) Aerobic exercise such as run/walk
for 1 to 3 hours per week (6)a

evel 5 (SR-PA-4) Aerobic exercise such as run/walk
for �3 hours per week (7)a

Original eight-category scale used by Jackson et al.15

Original ADNFS 6-category scale.20

CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dun
dministration/Johnson Space Center; SR-PA, self-reported physical

able 2. Demographic descriptive statistics (mean�SD) of m

ariable NASA

ample size (n) 1458
ge (years) 45.9�7.8
eight (cm) 177.2�6.3
eight (kg) 80.2�11.1
MI (kg/m2) 25.5�3.1
esting HR (beats/min) 64.9�10.5
aximal METs 10.98�2.30
aximal HR (beats/min) 176.4�11.4
ER 1.23�0.11
R-PA-0 (inactive) 16.1%
R-PA-1 (low) 29.6%
R-PA-2 (moderate) 20.5%
R-PA-3 (high) 17.8%
R-PA-4 (very high) 16.0%

CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar

etabolic equivalent; NASA, National Aeronautics and Space Administra

tandard deviation; SR-PA, self-reported physical activity.
igher SR-PA categories than the ACLS men. The
easured mean CRF of the NASA women was lower

han in ACLS and ADNFS women, but the difference
as small: 0.57 and 0.66 METs, respectively. The SR-PA
rofiles of the ACLS and ADNFS women were similar,
hereas a higher proportion of NASA women reported
atings in the high and very high categories.

Table 4 presents Pearson correlations between CRF
nd all independent variables within each database. All
orrelations were statistically significant (p �0.01), in-
icating that each independent variable was related to
RF. The highest correlations were found between CRF
nd SR-PA.

Table 5 shows multiple regression analysis for each
atabase. All variables used in the model were indepen-
ently related to CRF in each of the study cohorts. The
ultiple correlation coefficients (SEE) obtained within

scale for each database

S ADNFS

activity From 0 to 4 occasions of at least
moderate activity in past 4
weeks (1, 2)b

icipated in sporting or
isure-time physical
tivity other than

alking, jogging, or
nning

From 5 to 11 occasions of at
least moderate activity in past
4 weeks (3)b

k, jog, or run up to 10
iles per week

�12 Occasions of moderate
activity in past 4 weeks (4)b

k, jog, or run from 10
20 miles per week

�12 Occasions of a mix of
moderate and vigorous
activities in past 4 weeks (5)b

k, jog, or run �20
iles per week

�12 occasions of vigorous
activity in past 4 weeks (6)b

ational Fitness Survey; NASA, National Aeronautics and Space
ty.

each database and level of self-reported physical activity

ACLS ADNFS

35,826 853
43.3�9.6 41.6�13.3

178.7�6.5 175.8�6.9
83.5�12.7 77.9�10.8
26.3�3.7 25.2�3.2
60.9�11.0 69.2�10.8

11.57�2.17 12.61�2.94
178.8�12.8

37.2% 24.3%
18.2% 21.3%
27.2% 23.9%
11.4% 15.4%
6.0% 15.1%

onal Fitness Survey; BMI, body mass index; HR, heart rate; MET,
tivity

ACL

No

Part
le
ac
w
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Nati

tion/Johnson Space Center; RER, respiratory exchange ratio; SD,
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ASA, ACLS, and ADNFS participants, respectively,
ere 0.81 (1.45 METs), 0.77 (1.50 METs), and 0.76
1.97 METs). Table 5 includes regression weights of
ach independent variable, which were identical for
MI, while SR-PA demonstrated the greatest variance
mong the three cohorts. Although the regression
eights were similar between the NASA and ACLS
odel, the ANDFS regression weights for SR-PA were

onsistently lower compared with the other two models.
he NASA and ACLS differences in SR-PA categories
anged from 0.02 METs for SR-PA-4 to 0.49 METs for
R-PA-1.
To further examine the cross-validity of each of the

egression models, correlations were computed be-
ween estimated MET levels of CRF from each model
nd the measured MET value within each cohort
Table 6). The mean residual score for each regression
odel applied within each of the cohorts (Table 6) was

lso computed. The cross-validation correlations were
ower than the multiple regression correlations re-
orted in Table 5. When the NASA regression model
as applied to the ACLS and ADNFS data, Pearson
roduct-moment correlations of 0.76 and 0.75, respec-
ively, were observed. These correlations were 0.01
orrelation units less than the respective multiple re-

able 3. Demographic descriptive statistics (mean�SD) of w

ariable NASA

ample size (n) 401
ge (years) 39.5�9.6
eight (cm) 164.0�6.2
eight (kg) 64.1�11.5
MI (kg/m2) 23.8�4.0
esting HR (beats/min) 60.0�10.4
aximal METs 9.03�2.35
aximal HR (beats/min) 178.4�12.0
ER 1.26�0.10
R-PA-0 (inactive) 22.2%
R-PA-1 (low) 21.9%
R-PA-2 (moderate) 19.4%
R-PA-3 (high) 21.5%
R-PA-4 (very high) 15.0%

CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar
etabolic equivalent; NASA, National Aeronautics and Space Adm

tandard deviation; SR-PA, self-reported physical activity.

able 4. Pearson correlations between cardiorespiratory
tness and nonexercise independent variables

ariable NASA ACLS ADNFS

ender (F�0; M�1) 0.32* 0.35* 0.48*
ge (years) �0.35* �0.33* �0.51*
MI (kg/m2) �0.33* �0.26* �0.28*
esting HR (beats/min) �0.39* �0.42* �0.23*
R-PA 0.58* 0.48* 0.32*

p � 0.01 (bolded).
CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar
ational Fitness Survey; BMI, body mass index; F, female; HR, heart
E
ate; M, male; NASA, National Aeronautics and Space Administra-
ion/Johnson Space Center; SR-PA, self-reported physical activity.

88 American Journal of Preventive Medicine, Volume 29, Num
ression correlations observed in each cohort. Each of
he regression models demonstrated reasonably high
evels of validity as seen by relatively small prediction
rrors when a given regression model was applied
ithin the other two cohorts. The NASA regression
odel underestimated CRF in the ACLS and ADNFS

ohorts by 0.67 and 1.37 METs, respectively. In con-
rast, the ADNFS model systematically overestimated
RF in the NASA and ACLS cohorts by 1.03 and 0.56
ETs, respectively. The NASA model showed the high-

st cross-correlations and lowest SEE. Thus, a score
heet (Figure 1) was developed to predict CRF from the
egression coefficients of the NASA prediction model
Table 5).

iscussion

RF is a strong independent predictor of all-cause and
ause-specific mortality in asymptomatic individuals as
ell as in individuals with existing metabolic or cardio-
ascular disease.8,9,11 In spite of having a similar relative
nd attributable risk of mortality as regularly monitored
ealth indicators,8,11 feasibility issues limit assessment
f CRF in many healthcare settings. The purpose of the
urrent study was to expand previous work15 on a
on–exercise test model to predict CRF. Jackson et
l.15 reported the precision of a non–exercise predic-
ion model based on gender, age, BMI, and SR-PA in a
omogeneous cohort of men and women. This model
as cross-validated on a cohort of hypertensive men
nd women.15 In the current study, data were used
rom three cohorts, including a larger group of indi-
iduals from the NASA cohort where the original
egression model was developed. Resting HR was added
s an independent variable and the original eight-
ategory SR-PA scale was collapsed into a simpler
ve-category scale with more generalizable categories.

in each database and level of self-reported physical activity

ACLS ADNFS

10,364 853
42.4�10.3 41.4�13.2

164.5�6.1 162.2�6.3
61.7�11.3 64.9�11.3
22.8�3.9 24.7�4.1
64.3�11.0 72.3�10.5
9.60�2.39 9.69�2.38

33.9% 25.3%
21.6% 27.9%
28.7% 29.8%
11.1% 11.5%
4.7% 5.5%

onal Fitness Survey; BMI, body mass index; HR, heart rate; MET,
tion/Johnson Space Center; RER, respiratory exchange ratio; SD,
omen

Nati
ach of the three non–exercise models was congruent

ber 3
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nd generalizable within each of the cohorts. The
urrent NASA regression model showed a slightly bet-
er model fit compared with the previously reported
rediction equation15 (R�0.81 vs R�0.78).
Among the three prediction models in the current

tudy, the NASA model showed the highest multiple
orrelation and lowest standard error compared with
he equations derived in the ACLS and ADNFS. This is
ikely explained by differences in the dependent vari-
ble for each database. In the NASA cohort, CRF was
easured with the gold standard method of ventilatory

as analysis at maximal exertion during a graded tread-
ill exercise test. In the other two cohorts, CRF was

stimated from the maximal workload achieved
ACLS) or from submaximal responses (ADNFS) dur-
ng treadmill exercise testing. Nonetheless, the cross-
ohort validity and generalizability of each regression
odel within the two remaining cohorts were reason-

bly high, and indicate that a good estimate of CRF can
e obtained from the independent variables of gender,
ge, BMI, resting HR, and SR-PA habits, whether mea-
ured or estimated CRF was used as the dependent
ariable in developing the prediction model. Because
ach of these predictor variables is easily obtained, it is

able 5. Non-exercise regression analysis with MET levels of
ach database

NASA

ependent variable Measured METs
xercise test protocol Maximal

ntercept 18.07*
ender (F�0; M�1) 2.77*
ge (years) �0.10*
MI (kg/m2) �0.17*
esting HR (beats/min) �0.03*
R-PA-1 (low) 0.32*
R-PA-2 (moderate) 1.06*
R-PA-3 (high) 1.76*
R-PA-4 (very high) 3.03*

0.81*
2 0.65
EE 1.45

p � 0.01 (bolded).
CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar N
ale; MET, metabolic equivalent (1 MET�3.5 ml O2 uptake ·
dministration/Johnson Space Center; R, multiple correlation coeffic

able 6. Cross-validation analysis of nonexercise equations a

Regression model Data source
Cross-validity
correlation

ASA ACLS 0.76
ASA ADNFS 0.75
CLS NASA 0.80
CLS ADNFS 0.74
DNFS NASA 0.76
DNFS ACLS 0.72

CLS, Aerobics Center Longitudinal Study; ADNFS, Allied Dunbar N

ASA, National Aeronautics and Space Administration/Johnson Space Ce
elieved that non–exercise test methods of predicting
RF should become a routine component of primary
ealthcare examinations.
If CRF were to be assessed in healthcare settings,

here must be a meaningful way to interpret the results
or the purposes of risk stratification and individual
ounseling. Clinical measurements are more useful as
rognostic indicators when a specified level of the
arameter being measured identifies a threshold of

ncreased risk for adverse health outcomes.23 Cur-
ently, there is no complete consensus on a level of CRF
hat classifies an asymptomatic individual as high risk,
or is there agreement as to what level of CRF is
ufficient in the context of health and disease preven-
ion. However, results from four large prospective
tudies suggest that 9 to 10 METs for men and 7 to 8
ETs for women is a MET level associated with a �50%

eduction in mortality risk.10,24–27 Identification of
linically useful CRF values for detecting individuals
ith elevated mortality risk can not be based solely on
relative measure of association,23 but such observa-

ions may reveal a fitness level that can be subjected to
ore rigorous and clinically relevant sensitivity and

pecificity assessment such as receiver-operating char-

mal cardiorespiratory fitness as dependent variable for

ACLS ADNFS

Estimated METs Estimated METs
Maximal Submaximal

18.81* 21.41*
2.49* 2.78*

�0.08* �0.11*
�0.17* �0.17*
�0.05* �0.05*

0.81* 0.35*
1.17* 0.29*
2.16* 0.64*
3.05* 1.21*
0.77* 0.76*
0.60 0.58
1.50 1.97

l Fitness Survey; BMI, body mass index; F, female; HR, heart rate; M,
ody mass�1 · min�1); NASA, National Aeronautics and Space
EE, standard error of estimate; SR-PA, self-reported physical activity.

to other databases

95% CI
Residual score
(METs) 95% CI

0.75–0.77 0.67 0.66–0.69
0.72–0.78 1.37 1.26–1.48
0.77–0.82 �0.45 �0.54 to �0.36
0.71–0.77 1.06 0.95–1.17
0.74–0.80 �1.03 �1.11 to �0.95
0.71–0.73 �0.56 �0.58 to �0.55

l Fitness Survey; CI, confidence interval; MET, metabolic equivalent;
maxi

ationa
kg b
pplied
nter.

Am J Prev Med 2005;29(3) 189
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igure 1. Worksheet for estimating maximal MET levels of cardiorespiratory fitness from routinely collected clinical data.
Body mass index�(weight in lbs � 703)/(height in inches)2 or (weight in kilograms)/(height in meters)2. bAdapted from the

merican Heart Association.45,46 MET, metabolic equivalent.
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cteristic analysis.28 Additional work is needed to place
RF levels into clinical relevance similar to guidelines

hat currently exist for blood pressure, lipids, glucose,
nd body weight.29–32

There are three reasons for establishing a criterion
evel of CRF. First, low CRF carries the same or higher
trength of association and attributable risk for mortal-
ty as routinely measured clinical risk factors.8,9,11 Sec-
nd, because increases in CRF are often accompanied
y favorable changes in other health indicators such as
lood pressure, triglycerides, glycemic control, and
ody fat distribution,33,34 identifying and intervening
n low CRF may have additional health benefits beyond
he attributable fraction of mortality risk that has been
eported for low fitness. Third, there is a growing
rgency for additional clinical measures to improve
raditional approaches of identifying the high-risk
symptomatic patient who would benefit from intensive
rimary preventive therapy.35 Three recent studies
howed that measures of CRF provided added prognos-
ic value to conventional clinical risk assessment meth-
ds such as the Framingham risk score and echocardi-
graphy.36–38 However, the actual feasibility for use of
redicting CRF from non–exercise testing methods in
variety of healthcare settings needs to be determined.
To help facilitate an efficient use of the non–exercise

est prediction model reported here, a worksheet was
eveloped to compute an individual’s CRF level (Figure
). The worksheet can serve as the focus of individual
ounseling on improving or maintaining CRF. Because
he NASA equation had a slightly lower SEE, the
egression coefficients from the NASA model were used
n the worksheet. Suppose one is interested in quanti-
ying the CRF level of a 45-year-old male who weighs
93 pounds (87.7 kg), is 68 inches (172 cm) tall, and
as a resting HR of 72 beats per minute with a usual
attern of daily physical activity reported as Level 2.
fter entering all values in the worksheet, the estimated
aximal MET level of CRF for this person is 9.02 METs.
ased on available data,10,24–27 this man likely has an
cceptable level of CRF in terms of risk for premature
ortality.
When a concerningly low level of CRF is identified,

he following counseling should be considered. The
ajor determinant of CRF is the degree to which one is

egularly active over recent weeks and months, al-
hough a genetic component also exists.39,40 Indeed, in
ach cohort of the current analysis the independent
ariable with the strongest association with CRF deter-
ined from exercise testing was SR-PA level (Table 5).
urrent public health6,41 and clinical guidelines42 rec-
mmend the accumulation of �30 minutes of at least
oderate-intensity physical activity on �5 days of the
eek, and this is sufficient to improve low CRF. How-
ver, physical activity is similar to other therapeutic
gents with dose–response characteristics, wherein a

inimal dose that has proven efficacy and safety is t
ypically prescribed as the initial dose. Interindividual
esponses and differences in the specificity and severity
f the risk factor being addressed often dictate that the
ose of the therapeutic agent be titrated to maximize

ts effectiveness. These considerations also apply for
hysical activity interventions, to which interindividual
hysiological responses are documented.43 Thus, more
hysical activity may be required for some individuals to

mprove their CRF or other risk factor levels. It might
e argued that solely a measure of physical activity may
e more feasible to identify high-risk patients than the
on-exercise estimate of CRF given the limited time for
ounseling. No compelling data was found to evaluate
hich exposure, physical activity or estimated CRF, is a
ore important determinant of health outcomes. How-

ver, steeper gradients or stronger associations have
een shown between measured CRF, as compared with
R-PA, and health outcomes.44 It was assumed that the
tronger association for CRF was due primarily to less
isclassification than on the activity measure. However,

he precision of non–exercise test estimates of CRF as
redictors of health outcomes has yet to be examined.
Limitations of this study include population charac-

eristics, such as heterogeneity in race/ethnic distribu-
ions, cross-sectional design that prevents an analysis of
hether changes in CRF can be detected, and lack of
onsensus in the literature regarding definition of an
cceptable level of CRF for risk reduction. Strengths of
he study include compelling data on the importance of
RF for risk assessment, use of three different popula-

ions to test the model, and acceptable cross-validation
f the model.
Data presented here indicate that CRF may be as-

essed from a non–exercise test model including gen-
er, age, BMI, resting HR, and SR-PA. Such a model is
alid across diverse population cohorts. Additional
ork is needed to assess the actual feasibility of this
pproach in primary care and other settings, to verify

What This Study Adds . . .

Precise assessment of cardiorespiratory fitness is
obtained by ventilatory gas analysis at maximal
exertion.

However, the prediction of fitness from non-
exercise models seems most appropriate for wide-
spread use in many healthcare settings.

This study expanded previous work on non–
exercise test model to predict fitness by conduct-
ing additional analyses on large cohorts.

Results suggest that fitness may be assessed
from a non-exercise model, including gender,
age, body mass index, resting heart rate, and
self-reported physical activity.
he validity of non-exercise estimates of CRF as predic-
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ors of health outcomes and to establish a target level of
RF for primary prevention.
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