Problem Set #13 Solutions

- 1. All other things equal (YTM = 10%), which of the following has the longest duration?
 - (A.)A 30-year bond with a 10% coupon
 - B. A 20-year bond with a 9% coupon
 - C. A 20-year bond with a 7% coupon
 - D. A 10-year zero-coupon bond
- 2. Compute the duration of an 8%, 5-year corporate bond with a par value of \$1,000 and yield to maturity of 10%.
 - A. 3.92
 - B.4.28
 - C. 4.55
 - D. 5

Time	\mathbf{CF}	PV(CF) @ 10%	w_t	$t \times w_t$
1	\$80	\$72.73	0.0786935	0.078693477
2	\$80	\$66.12	0.0715395	0.143079048
3	\$80	\$60.11	0.0650359	0.195107793
4	\$80	\$54.64	0.0591236	0.236494295
5	\$1,080	\$670.60	0.7256075	3.628037474
		\$924.18	1.00	4.28

- 3. You find a 5-year AA Xerox bond priced to yield 6%. You find a similar-risk 5-year Canon bond priced to yield 6.5%. If you expect interest rates to rise, which of the following should you do?
 - A. Short the Canon bond, and buy the Xerox bond.
 - BBuy the Canon bond, and short the Xerox bond.
 - C. Short both the Canon bond and the Xerox bond.
 - D. Buy both the Canon bond and the Xerox bond.

4. You own a bond that has a duration of 6 years. Interest rates are currently 7%, but you believe the Fed is about to increase interest rates by 25 basis points. Your predicted price change on this bond is

A. +1.4%

B. 1.4%

C. -2.51%

D. +2.51%

$$D^* = 6/1.07 = 5.61$$

 $\Delta P/P = -D^*(\Delta y) = -5.61(.25\%) = -1.4\%$

5. A bond currently has a price of \$1,050. The yield on the bond is 6%. If the yield increases 25 basis points, the price of the bond will go down to \$1,030. The duration of this bond is _____ years.

A. 7.46

B. 8.08

C. 9.02

D. 10.11

$$\Delta P/P = -D^*(\Delta y)$$

 $-20/1,050 = -D^*(.25\%)$
 $-1.9\% = -D^*(.25\%)$
 $D^* = 7.6$
 $D = D^*(1 + y)$
 $D = 7.6(1.0625) = 8.075$

- 6. All other things equal, which of the following has the longest duration?
 - A. A 21-year bond with a 10% coupon yielding 10%
 - B. A 20-year bond with a 10% coupon yielding 11%
 - C.) A 21-year zero-coupon bond yielding 10%
 - D. A 20-year zero-coupon bond yielding 11%

7. A bond has a current price of \$1,030. The yield on the bond is 8%. If the yield changes from 8% to 8.1%, the price of the bond will go down to \$1,025.88. The modified duration of this bond is

- A. 4.32
- B.)4
- C. 3.25
- D. 3.75

$$\Delta P/P = -D^*(\Delta y)$$

-.40% = -D*(.10%)
 $D^* = .40\%/.10\% = 4$

- 8. A bond has a maturity of 12 years and a duration of 9.5 years at a promised yield rate of 8%. What is the bond's modified duration?
 - A. 12 years
 - B. 11.1 years
 - C. 9.5 years
 - D.8.8 years

$$D^* = 9.5/1.08 = 8.8$$
 years

- 9. A bond with a 9-year duration is worth \$1,080, and its yield to maturity is 8%. If the yield to maturity falls to 7.84%, you would predict that the new value of the bond will be approximately ______.
 - A. \$1,035
 - B. \$1,036
 - C. \$1,094
 - D. \$1,124

$$\Delta P/P = -D^*(\Delta y)$$

 $D^* = D/(1 + y) = 9/1.08 = 8.33$
 $\Delta P/P = -D^*(\Delta y) = -8.33(-.16\%) = 1.33\%$
New price = \$1,080(1.01333) = \$1,094.40