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Model-Fitting with Linear Regression: Exponential Functions 
 
In class we have seen how least squares regression is used to approximate the linear 
mathematical function that describes the relationship between a dependent and an independent 
variable by minimizing the variation on the y axis.  Linear regression is a very powerful 
statistical technique as it can be used to describe more complicated functions (such as 
exponential or power functions) by linearizing the data sets in question.   
 
In this example we will look at the macroecological relationship between the size of the home-
range (km2) of a hunter-gatherer group, and the contribution (%) of hunted foods to the diet.  We 
are interested in 1) describing this functional relationship mathematically, 2) explaining why this 
relationship holds as it does, and 3) testing the strength of this relationship using an alternative, 
independent data set.  We will be using data from Kelly (1995) and Binford (2001). 
 
If we were interested in developing a model that predicts the annual territory size (or home-
range) of a hunter-gatherer group, a logical place to start would be to think about environmental 
constraints.  Kelly (1995, chapter 4) hypothesizes that territory size should be related to the 
amount of hunted foods in the diet (% hunting) as the greater the reliance on mobile food 
resources, the greater the required area for hunting (holding all else equal).  We can expand on 
Kelly’s hypothesis by noting that area should increase exponentially, not linearly, with % 
hunting, as area is measured in km2, not linear km, such that as % hunting increases, area should 
increase by a factor greater than 1: that is we expect the slope of the relationship βx*y > 1. 
 
Let % Hunt = the percentage contribution of hunted foods to the diet, Area = the home-range or 
area of the annual territory size of a hunter-gatherer group measured in square kilometers (km2), 
and βH*A = the slope of the relationship between % Hunt on Area.  We wish to test the following 
hypothesis at the a = 0.05 (95%) confidence level: 
 
HO: βH*A = 0 
HA : not HO
 
Kelly’s data are as follows (n = 39): 
 
  % Hunt Area 
yurok  10  35 
andamanese 20  40 
vedda  35  41 
anbarra 13  56 
tolowa  20  91 
quinault 30  110 
ainu  20  171 
makah  20  190 
puyallup 20  191 
twana  30  211 
ojibwa  40  320 
nootka  20  370.5 

% Hunt Area 
walapai 40  588 
bella coola 20  625 
s. kwakiutl 20  727 
siriono  25  780 
gwi  15  782 
penan  30  861 
kade gwi 20  906 
haida  20  923 
klamath 20  1058 
s. tlingit 30  1953 
n. paiute 20  1964 
nez perce 30  2000 
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washo  30  2327 
semang 35  2475 
n. tlingit 30  2500 
hadza  35  2520 
monyagnais 60  2700 
plains cree 60  2890 
aeta  60  3265 
mistassini cree 50  3385 

polar inuit 40  25000 
crow  80  61880 
micmac 50  5200 
mbuti  60  780 
dobe  20  2500 
maidu  30  3255 
nunamiut 87  20500

 
 
We first need to see whether is some kind of consistent relationship between % Hunt and Area.  
To do this we can produce scatter plots in either EXCEL or MINITAB. 
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We can see from this EXCEL scatter plot that there does seem to be a trend to the data, only the 
trend is curvilinear rather than linear.  Also we note that as % Hunt increases, Area seems to 
increase exponentially, as we hypothesized.  The black line on the plot is a fitted exponential 
function.  How do we describe mathematically an exponential function without a lot of math?  
Well, first we can try to linearize the relationship between % Hunt and Area.  With an 
exponential relationship like this, we log transform the data on the y axis, that is for each yi data 
point (Area) we take the base of the natural logarithms loge(yi), or the command =ln(y) in 
EXCEL.  We can then plot out this data. 
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We can see that by log-transforming the y-axis we have now linearized the trend in the data.  
This means that we can now use a simple linear regression model to describe the relationship 
between our variables of interest, remembering that we are now actually calculating the linear 
equation loge Y = f(X), that is log Y = α + βX. To convert loge Y into Y we use some simple 
algebra with our final regression equation. 
 
First, let’s calculate the regression equation: 
 
X = 33.205 
Y = 6.801 (remember this is the mean of logeY, not the mean of Y logged) 
 
Calculation for Ŷ : 
 

062978.0
36.12362

558.778
2 === ∑

x
xy

β  

 
709847.4205.33*062978.0801.6 =−=−= XY βα  

 
XXY 062978.0709847.4ˆ +=+= βα  
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%H Area ln Area x y x2 xy y2 Yhat dXY d2XY yhat y2hat
10 35 3.56 -23.21 -3.25 538.48 75.32 10.53 5.34 -1.78 3.18 -1.46 2.14
20 40 3.69 -13.21 -3.11 174.38 41.10 9.69 5.97 -2.28 5.20 -0.83 0.69
35 41 3.71 1.79 -3.09 3.22 -5.54 9.53 6.91 -3.20 10.24 0.11 0.01
13 56 4.03 -20.21 -2.78 408.25 56.08 7.70 5.53 -1.50 2.26 -1.27 1.62
20 91 4.51 -13.21 -2.29 174.38 30.24 5.24 5.97 -1.46 2.13 -0.83 0.69
30 110 4.70 -3.21 -2.10 10.27 6.73 4.41 6.60 -1.90 3.61 -0.20 0.04
20 171 5.14 -13.21 -1.66 174.38 21.91 2.75 5.97 -0.83 0.69 -0.83 0.69
20 190 5.25 -13.21 -1.55 174.38 20.52 2.41 5.97 -0.72 0.52 -0.83 0.69
20 191 5.25 -13.21 -1.55 174.38 20.45 2.40 5.97 -0.72 0.51 -0.83 0.69
30 211 5.35 -3.21 -1.45 10.27 4.64 2.10 6.60 -1.25 1.56 -0.20 0.04
40 320 5.77 6.79 -1.03 46.17 -7.02 1.07 7.23 -1.46 2.13 0.43 0.18
20 370.5 5.91 -13.21 -0.89 174.38 11.70 0.79 5.97 -0.05 0.00 -0.83 0.69
40 588 6.38 6.79 -0.42 46.17 -2.88 0.18 7.23 -0.85 0.73 0.43 0.18
20 625 6.44 -13.21 -0.36 174.38 4.80 0.13 5.97 0.47 0.22 -0.83 0.69
20 727 6.59 -13.21 -0.21 174.38 2.80 0.04 5.97 0.62 0.38 -0.83 0.69
25 780 6.66 -8.21 -0.14 67.32 1.16 0.02 6.28 0.37 0.14 -0.52 0.27
15 782 6.66 -18.21 -0.14 331.43 2.53 0.02 5.65 1.01 1.01 -1.15 1.31
30 861 6.76 -3.21 -0.04 10.27 0.14 0.00 6.60 0.16 0.03 -0.20 0.04
20 906 6.81 -13.21 0.01 174.38 -0.11 0.00 5.97 0.84 0.70 -0.83 0.69
20 923 6.83 -13.21 0.03 174.38 -0.35 0.00 5.97 0.86 0.74 -0.83 0.69
20 1058 6.96 -13.21 0.16 174.38 -2.15 0.03 5.97 0.99 0.99 -0.83 0.69
30 1953 7.58 -3.21 0.78 10.27 -2.49 0.60 6.60 0.98 0.96 -0.20 0.04
20 1964 7.58 -13.21 0.78 174.38 -10.32 0.61 5.97 1.61 2.60 -0.83 0.69
30 2000 7.60 -3.21 0.80 10.27 -2.56 0.64 6.60 1.00 1.00 -0.20 0.04
30 2327 7.75 -3.21 0.95 10.27 -3.05 0.90 6.60 1.15 1.33 -0.20 0.04
35 2475 7.81 1.79 1.01 3.22 1.82 1.03 6.91 0.90 0.81 0.11 0.01
30 2500 7.82 -3.21 1.02 10.27 -3.28 1.05 6.60 1.22 1.50 -0.20 0.04
35 2520 7.83 1.79 1.03 3.22 1.85 1.06 6.91 0.92 0.84 0.11 0.01
60 2700 7.90 26.79 1.10 717.97 29.47 1.21 8.49 -0.59 0.35 1.69 2.85
60 2890 7.97 26.79 1.17 717.97 31.30 1.36 8.49 -0.52 0.27 1.69 2.85
60 3265 8.09 26.79 1.29 717.97 34.56 1.66 8.49 -0.40 0.16 1.69 2.85
50 3385 8.13 16.79 1.33 282.07 22.27 1.76 7.86 0.27 0.07 1.06 1.12
40 25000 10.13 6.79 3.33 46.17 22.60 11.06 7.23 2.90 8.40 0.43 0.18
80 61880 11.03 46.79 4.23 2189.76 198.03 17.91 9.75 1.28 1.65 2.95 8.69
50 5200 8.56 16.79 1.76 282.07 29.48 3.08 7.86 0.70 0.49 1.06 1.12
60 780 6.66 26.79 -0.14 717.97 -3.80 0.02 8.49 -1.83 3.35 1.69 2.85
20 2500 7.82 -13.21 1.02 174.38 -13.51 1.05 5.97 1.85 3.44 -0.83 0.69
30 3255 8.09 -3.21 1.29 10.27 -4.12 1.66 6.60 1.49 2.22 -0.20 0.04
87 20500 9.93 53.79 3.13 2893.89 168.22 9.78 10.19 -0.26 0.07 3.39 11.48

1295 156171 265.2407 0 0 12362.36 778.56 115.501 265.241 0 66.4689 0 49.032
 
So, our regression equation at this stage is ( ) XXYe 062978.0709847.4ˆlog +=+= βα .  
However, we are really interested in Ŷ, not loge(Ŷ), so we use some algebra to get us there: 
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So our final regression equation is,  
 
Y = 111.04e0.063X 

 
This is an exponential function where the Y intercept is the same as usual (a) but Y increases as 
an exponential function of X.  In this case our βH*A = e0.063 = 1.065, which is as we hypothesized,  
βH*A > 1. 
 
But, we are far from finished!  We still need to calculate our ANOVA table, and calculate the 
resulting significance.  So, calculating the quantities: 
 
ΣX = 1295 
ΣY = 265.241 
ΣX2 = 55363 
ΣY2 = 1919.415 
ΣXY = 9585.909 
X = 33.205 
Y = 6.801 
Σx2 = 12362.35 
Σy2 = 115.501 
Σxy = 778.558 
Σy2 = 49.032 
Σd2

YX = 66.467 
 
The resulting ANOVA table is: 
 
Source of Variation df SS  MS  FSTAT  p 
Explained  1 49.032  49.032  27.295  <0.001 
Error   37 66.467  1.796 
Total   38 115.499 
 
To estimate our p value, we look up the FCRIT {1,37,0.05}.  In the table, they do not give a value 
for 37, so the closest value is 40.  Therefore our FCRIT ≈ 4.08 which is much less than our FSTAT 
suggesting we reject the null hypothesis in favor of the alternative.  Looking down the FCRIT 
values, our FSTAT is greater than the smallest value given, so that we can be safe in saying our p < 
0.001. 
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The regression coefficient of this test is r2 = ExSS/TotalSS = 49.032/115.499 = 0.425, that is to 
say the amount of hunting in the diet explains about 42.5% of the variation in annual territory 
size.  Is this a good result?  Well first of all I would note that the relationship is highly 
significant, as the p value is infinitesimally small, and further, if you consider all the factors that 
might go into the size of a territory (environmental/ecological variation, competition with 
neighboring groups, different types of hunted prey, different technologies, group sizes etc.), 
being able to explain over 40% of the variation with a single variable is pretty powerful. 
 
To run this test in MINITAB: 
 
>STAT 

 >REGRESSION 

  >REGRESSION 

   >RESPONSE is log AREA 

    >PREDICTOR is % HUNT 

     >STORAGE 

      >RESIDUALS 

       >OK 

        
The output looks like: 
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Regression Analysis 
 
The regression equation is 
log Area = 4.71 + 0.0630 %Hunt 
 
Predictor       Coef       StDev          T        P 
Constant      4.7098      0.4542      10.37    0.000 
%Hunt        0.06298     0.01205       5.22    0.000 
 
S = 1.340       R-Sq = 42.5%     R-Sq(adj) = 40.9% 
 
Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    1      49.032      49.032     27.29    0.000 
Error        37      66.469       1.796 
Total        38     115.501 
 
Unusual Observations 
Obs     %Hunt   log Area        Fit  StDev Fit   Residual    St Resid 
  3      35.0      3.714      6.914      0.216     -3.201      -2.42R  
 33      40.0     10.127      7.229      0.230      2.898       2.19R  
 34      80.0     11.033      9.748      0.604      1.285       1.07 X 
 39      87.0      9.928     10.189      0.683     -0.261      -0.23 X 
 

 
So in the MINITAB output we get the regression equation, the r2 value, and the ANOVA table, 
all of which should agree with our hand calculations.  The unusual observations at the bottom of 
the output is a list of variables that have a large influence on the relationship.  What does this 
mean?  This means that, depending on your time, interest, or the question at hand, you may 
choose to run the regression analysis with all or none of these variables included.  By omitting 
these variables it is possible to weed out those observations that have a large influence on the end 
result.  There is no cut and dried formula as to whether you should do this: it is really up to you 
to decide how you want to manage your data. 
 
In MINITAB you cannot produce a regression scatter plot from the GRAPH option in the 
analysis, but you can produce one under FITTED LINE PLOTS under the regression options 
dialogue plot. 
 
Here is the MINITAB version of the graphical output: 
 



General Linear Models: Modeling with Linear Regression I 8

908070605040302010

12

11

10

 9

 8

 7

 6

 5

 4

 3

%Hunt

lo
g 

Ar
ea

R-Sq = 0.425
Y = 4.70985 + 6.30E-02X

95% CI

Regression

Regression Plot

 
  
Notice that the regression equation given here is before we transformed it back into the original 
unlogged version (see above). 
 
One last thing we have to do is check our normality assumption as it relates to the residuals.  To 
do this we run a normality test on our residuals and we find: 
 

P-Value:   0.139
A-Squared: 0.560

Anderson-Darling Normality Test

N: 39
StDev: 1.32257
Average: -0.0000000
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Our p is greater than our unstated a, and so we can say our normality assumption in met. 
 
An interesting second stage of this analysis would be to test the relationship we have 
documented here against an independently derived data set.  If we could do this, it would help us 
establish whether the relationship we have documented above is simply an artifact of the data 
Kelly gathered, or whether this is due to a real, robust relationship between territory size and 
hunting.  Luckily, Binford’s data can be used to test this idea. 
 
The Binford data set includes a very large sample size (n = 339) suggesting any relationships we 
find should be pretty powerful, and is therefore an ideal data set with which to test the Kelly 
relationship.  I will not list all 339 hunter-gatherer groups! 
 
The MINITAB output is: 
 

Regression Analysis 
 
The regression equation is 
log AREA = 2.96 + 0.0482 HUNT 
 
Predictor       Coef       StDev          T        P 
Constant      2.9591      0.1593      18.57    0.000 
HUNT        0.048187    0.004118      11.70    0.000 
 
S = 1.517       R-Sq = 28.9%     R-Sq(adj) = 28.7% 
 
Analysis of Variance 
 
Source       DF          SS          MS         F        P 
Regression    1      314.97      314.97    136.91    0.000 
Error       337      775.31        2.30 
Total       338     1090.28 
 

 
For consistency we’ll convert the regression equation to reflect Area, not log Area. 
 
Y = 19.28e0.0482X

 
Notice that the r2 = 0.289 or 28.9%, which is much less than the Kelly data, but still this is not 
bad considering we have about ten times more data from the Binford data set! 
 
To see graphically how similar the relationships our in both of the data sets we can plot the two 
sets of data on the same scatter plot in EXCEL: 
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Now, the value we are interested in here is Binfords β = βB = exp(0.0482), which on the face of it 
seems to be pretty close to the Kelly βK = exp(0.063).  This is illustrated on the above scatter 
plot.  To test whether βB = βK we can put confidence limits around βK and see whether they 
encompass a value of βB. 
 
First we need to calculate the standard error of the regression coefficient: 
 

0121.0
35.12362

796.1
2

2
* ===

∑ x
SS XY

β  

 
And the TCRIT {0.05, 37} ≈ 2.021, therefore the upper and lower confidence limits are: 
 
CLL = e0.063 – 0.0121*2.021 =1.0406 
CLU = e0.063 + 0.0121*2.021 = 1.0895 
 
As βB = exp(0.0482) = 1.0494 we find that the slope from the Binford data falls within the 95%  
confidence limits of Kelly’s slope suggesting they are statistically equal, and that the relationship 
we first documented between the contribution of hunted foods to the diet and home-range size 
holds.  As such, we could go on to use the slope of this relationship as a robust model for 
predicting hunter-gatherer territory sizes from aspects of their diet. 
 
To summarize all of the above, we can now use linear regression to approximate relatively 
complicated functions by simply log transforming the appropriate data. 
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