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MELANIE E. MOSES 
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Ph.D., Biology, University of New Mexico, 2005 

 

ABSTRACT 

 

The flux of energy and materials constrains all organisms. Allometric relationships 

between rates of energy consumption and other biological rates are manifest at many 

levels of biological organization. Here I examine relationships between social 

organization, energy consumption and reproductive rates. First, I present a model relating 

fertility rates to per capita energy consumption rates in contemporary human nations. 

Fertility declines as per capita energy consumption increases with a scaling exponent of  

-1/3 as predicted by allometric theory. Second, I examine the tradeoffs that occur 

between life history characteristics as mammals allocate energy to reproduction. The 

analysis shows that although reproductive effort is independent of adult mass, larger 

mammals have lower reproductive rates because they spend more time providing energy 

to grow each offspring. Third, I present the Allometric Network Travel and Search 

(ANTS) model of optimal colony foraging behavior as a function of colony size. Field 

observations of three Pogonomyrmex species show that large and small colonies employ 

different foraging strategies, each designed to minimize foraging time such that foraging 
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times of individual ants are very similar across a 30-fold difference in colony size. As a 

result, metabolic intake rates of colonies scale isometrically with the number of foragers 

in the colony. Finally, I show that because they integrate all parts of an individual or 

society, metabolic networks have allometric scaling of delivery capacity with network 

size. This common scaling behavior may lead to common patterns in energy acquisition 

and allocation in individuals and societies.  
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1 INTRODUCTION: A BIOLOGICAL APPROACH TO STUDYING  

SOCIAL METABOLISM 

 
1.1 BACKGROUND 

 

It is easy to imagine a human society as a super-organism. Roads and railways are its 

arteries and veins that distribute energy and materials throughout its territory. Oil wells 

and power plants are its lungs and heart, acquiring and transforming the energy that 

sustains it. Humans are its neurons, connected by wireless transmissions and telephone 

lines to direct, monitor and regulate its activities.  

 Such metaphors are thought provoking, but to study societies with the scientific 

tools of biology requires more than analogies. Here I examine metabolic patterns in 

human societies, individual mammals and ant colonies, and I investigate whether they are 

generated by common processes. 

Biologists study life at different levels of organization. Cells are organized into 

organisms which can be organized into populations, communities, ecosystems, and 

societies. Frequently biologists study the processes by which lower level entities are 

organized into higher-level units; for example, how cells are integrated to form a 

functioning organism. There may also be feedback from a higher level that affects its 

constituent parts (Allen & Starr 1982). For example, the size of an organism constrains 

the metabolic rate of its cells (West et al. 2002). Likewise, properties of a society 

apparently constrain and influence the ecology, behavior, and life history of its 

individuals.  
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Howard Odum (1971, 1973) suggests that energy flows in societies could be 

studied in the same way they are studied in organisms and ecosystems. Social scientists 

have also considered energy flow to be a fundamental attribute of societies (White 1949, 

Rosa et al. 1988, Tainter 1990). These ideas have recently gained traction as ecologists 

study the metabolism of cities (Decker et al. 2002), ecological footprints of cities and 

regions (Luck et al. 2001), and the sustainability and ecological impacts of human 

societies (Vitousek et al. 1986 and 1997, Wackernagel et al. 2002). These studies focus 

on the external effects that human society has on other species, ecosystems, and the 

biosphere. While these external effects are of great significance, here I am interested in 

how the energy consumption of a society affects the ecology of the individuals who 

constitute that society.  

 

1.2 DEFINITIONS AND TOOLS  

 

Metabolism is the rate at which energy is exchanged between an organism and its 

environment, transformed within an organism, and allocated to maintenance, growth and 

reproduction (Brown et al. 2004). Likewise, we can understand social metabolism as the 

rate at which energy is exchanged between a society and its environment, transformed 

within that society and allocated to maintenance, growth and, in some cases, reproduction 

of the society. In industrial societies, metabolism consists of consumption of all forms of 

fossil fuels, nuclear power, and electricity. This consumption can be referred to as 

industrial metabolism (Anderberg 1998). 
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Whole-organism metabolic rate scales as mass to the 3/4 power (Peters 1983, 

West et al. 1999) and most other biological rates, such as heart rate, reproductive rate and 

cellular metabolic rate, scale as mass to the -1/4 power (Peters 1983; Calder 1984; West 

et al. 1999). Metabolic theory posits that these scaling laws result from energetically 

efficient, space filling, fractal-like resource distribution networks such as the circulatory 

system of mammals or the vascular system of plants (West et al. 1999, 2000). Biological 

rates are ultimately limited not by mass, per se, but by rates of energy and material 

turnover.  

Life is constrained by these fundamental allometric relationships at many levels 

of biological organization, including the level of mitochondrial activity within cells (West 

et al. 2002), the fertility rates of mammals and growth rates of populations (Charnov 

1993), the population density of mammals and trees (Damuth 1981, Enquist et al. 1998) 

and foraging success in landscapes (Milne et al. 1992, Milne 1997). Scaling exponents 

are predictable despite extraordinary differences among these systems in network size 

and architecture, suggesting that there are fundamental tradeoffs between biological rates 

and power consumption. I apply the tools and approaches from metabolic theory to 

understand the ecological consequences of social metabolism on the individuals that 

constitute those societies.  

 

1.3 APPROACH 

 

I examine how the metabolic networks of societies constrain the ecology and behavior of 

individuals in those societies. In chapter 2, I show that modern human birth rates decrease 
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as industrial metabolic rates increases. The scaling of birth rate with industrial 

metabolism has the same scaling exponent as the scaling of birth rate with individual 

metabolic rate in mammals. Both patterns are predictable from metabolic theory.  

Chapter 2 raises two interesting questions that I explore in subsequent chapters. 

First, in Chapter 3, I investigate the energetic basis of birth rate scaling in mammals. 

Birth rates decline as mammal body size increases because larger mammals provision 

their offspring with more energy in order to grow them to a larger size. Providing larger 

amounts of energy for growth takes a longer time, and that time is described by metabolic 

theory. If this same process occurs in modern human societies, we would expect birth 

rates to decline when humans have high requirements for industrial metabolism, as they 

do in industrialized nations. 

Second, in Chapter 4, I investigate metabolic scaling in ant colonies to determine 

whether metabolism in societies follows the scaling rules of individuals. I show that some 

aspects of ant foraging change as the size of the colony increases. In particular, the time 

and distance foragers spend traveling to acquire resources scales allometrically with the 

number of foragers in the colony. 

In Chapter 5, I show that the geometric scaling that describes ant foraging 

distances has the same mathematical basis as metabolic scaling in mammals and other 

individual organisms, even though the ants are not necessarily using fractal branching 

networks to acquire energy. This suggests that social networks operating in three 

dimensions can generate 1/4 power scaling, even when the network geometry is very 

different from biological networks. This supports the hypothesis that the metabolic 

scaling of human birth rates is similar to the metabolic scaling of mammalian birth rates 
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because industrial metabolic networks operate with delivery efficiency that is similar to 

that of biological networks. 
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2 THE ALLOMETRY OF HUMAN FERTILITY AND ENERGY USE 

 
2.1 ABSTRACT 
 

The flux of energy and materials constrains all organisms. Allometric relationships 

between rates of energy consumption and other biological rates are manifest at many 

levels of biological organization. Although human ecology is unusual in many respects, 

human populations also face energetic constraints. Here we present a model relating 

fertility rates to per capita energy consumption rates in contemporary human nations. 

Fertility declines as energy consumption increases with a scaling exponent of -1/3 as 

predicted by allometric theory. The decline may be explained by parental trade-offs 

between the number of children and the energetic investment in each child. We 

hypothesize that the -1/3 exponent results from the scaling properties of the networked 

infrastructure that delivers energy to consumers. This allometric analysis of human 

fertility offers a framework for understanding the demographic transition to smaller 

family sizes, with implications for human population growth, resource use and 

sustainability. This chapter was coauthored by James H. Brown (Department of Biology, 

University of New Mexico). It was published in Ecology Letters, Volume 6, 2003, pp. 

295-300. Copyright © 2003 Blackwell Publishing Ltd/CNRS. 
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2.2 INTRODUCTION 
 

Relationships between body size, metabolism, and biological rates and times result from 

fundamental allometric constraints on the structure and function of individual organisms 

(Peters 1983, West et al. 2000). Recent theory proposes that these ubiquitous empirical 

patterns occur because organisms have been selected to simultaneously maximize 

metabolic capacity and the efficiency of internal energy transport (West et al. 1999). 

Modern humans are unique in that energy consumption is not limited by body 

mass and metabolic rate, but by the ability to harness non-metabolic energy such as gas, 

oil, coal, and nuclear, solar and hydroelectric power. Here we examine how modern 

human fertility varies with per capita energy consumption. Interestingly, modern fertility 

rates are largely a matter of choice, and like energy consumption, are not solely 

determined by human physiology. Still, human fertility varies with energy consumption 

in accordance with allometric predictions. This raises the possibilities that allometry may 

describe non-biological energy distribution networks and that human reproductive 

choices may ultimately be guided by that allometry. 

Allometric scaling relationships are described by power functions that relate 

dependent variables to body mass. Whole-organism metabolic rate, or the rate of energy 

consumption, scales as mass to the 3/4 power (Peters 1983, West et al. 1999): 

 

B = B0 M 3/4          [2.1] 

 

where B is the metabolic rate, M is body mass and B0 is a scaling constant. Most other 

biological rates (R), such as heart rate, reproductive rate or cellular metabolic rate, are 
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predicted and observed to scale as mass to the -1/4 power (Peters 1983; West et al. 1999, 

2000): 

 

R ~ M -1/4         [2.2] 

 

These scaling laws follow from allometric theory in which metabolism is limited 

by an energetically efficient, space filling, fractal-like resource distribution network, such 

as the circulatory system of mammals or the vascular system of plants (West et al. 1999, 

2000). Biological rates are ultimately limited not by mass, per se, but by rates of energy 

and material turnover. Re-arranging the relationships in 2.1 and 2.2 shows the predicted 

relationship between metabolic rate and other biological rates: 

 

R ~ B -1/3         [2.3] 

 

Life is constrained by these fundamental allometric relationships at many levels 

of biological organization, including the level of mitochondrial activity within cells 

(West et al. 2002), the fertility rates of mammals and growth rates of populations 

(Charnov 1993), and the population density of mammals and trees (Damuth 1981, 

Enquist et al. 1998). Scaling exponents are predictable despite extraordinary differences 

among these systems in network size and architecture, suggesting that there are 

fundamental tradeoffs between biological rates and power consumption. We 

suggest that these trade-offs constrain human fertility as well. 
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Although humans are highly unusual organisms in many respects, most 

characteristics of human physiology are predictable from scaling relationships observed 

in other mammals, particularly primates. For example, human metabolic rate can be 

predicted by allometric equations. By using the empirically determined B0 = 5.66 for 

higher primates (Peters 1983), Equation 2.1 predicts that the metabolic rate of a 60-

kilogram human is 120 watts or 2500 calories per day. However, humans differ from 

other organisms in their social organization and ecology. The exploitation of 

supplemental energy sources has fueled 10,000 years of exponential human population 

growth (Cipolla 1972), the development of modern industrial–technological societies, 

and the rise of Homo sapiens to become the dominant species on earth, with major 

impacts on global biodiversity, biogeochemical cycles and climate (Vitousek et al. 1986, 

1997). 

Biological metabolism is a small fraction of the total energy consumed by modern 

humans who utilize vast distribution networks to extract and deliver oil, gas, coal, 

electricity and other resources. These energy resources constitute the metabolism of 

modern industrial societies. Per capita consumption of this industrial metabolism varies 

from a few hundred watts in the poorest nations, to many thousands of watts in more 

industrial countries, which rely predominantly on fossil fuels (World Resources Institute 

2000). The per capita rate of industrial metabolism in the United States is 11,000 W 

(World Resources Institute 2000) which is approximately 100 times the rate of biological 

metabolism and, from Equation 2.1, is the estimated rate of energy consumption of a 

30,000-kg primate. 
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2.3 METHODS 
 
 
We used data from over 100 nations from 1970 to 1997 (World Resources Institute 2000) 

to test the hypothesis that industrial metabolism and birth rates are related by Relation 

2.3. Demographic data consist of total fertility rates (projected lifetime births per woman 

based on age-specific annual fertility), crude fertility rates (births per 1000 population per 

year) and infant mortality rates (deaths per 1000 live births) for each nation. Per capita 

industrial metabolism is the per capita share of the total energy consumed by each nation. 

These values were converted into watts and averaged to correspond with 5-year averages 

of demographic data. Additional data covering the period 1850–2000 were obtained for 

USA fertility (Coal 1963) and per capita rate of industrial metabolism (Schurr & 

Netschert 1960, US Department of Energy 2002). 

Mammal masses and annual birth rates were obtained from Ernest (2003). 

Mammal metabolic rates were estimated from mass using allometric equations for each 

order (Peters 1983). In humans, annual births per woman were calculated by dividing 

lifetime fertility by an assumed average 20-year reproductive period. The relationship 

between fertility and industrial metabolism was determined using ordinary least squares 

regression of log-transformed variables to be consistent with other allometric 

calculations. Ten oil-producing nations with extremely high per capita energy production 

(Oman, Qatar, Saudi Arabia, United Arab Emirates, Bahrain, Kuwait, Netherlands 

Antilles, Brunei, Libya and Turkmenistan) are significant outliers in most years and are 

excluded from regression equations. 
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2.4 RESULTS 
 

Of interest here is the extent to which industrial metabolism constrains human life history 

and demography. A well-known feature of human ecology is the demographic transition, 

the tendency of fertility to decline as economic development increases. This phenomenon 

appears to challenge life-history theory because individuals with greater access to 

resources have fewer children and apparently reduced biological fitness (Hill & Kaplan 

1999, Borgerhoff Mulder 2001). Here we show that per capita fertility is closely 

correlated to per capita rates of industrial metabolism (E), where E is the individual share 

of total national energy consumption and includes end consumer uses (heating houses, 

driving cars, running refrigerators) and per capita contributions to infrastructure (building 

and maintaining roads, airlines, communications networks and national defense systems). 

Figure 2.1 shows that human fertility declines with E -1/3 in each time period from 

1970 to 1997. Each data point represents the average fertility and per capita power 

consumption of a nation over the indicated time interval. The qualitative trend in Figure 

2.1 is consistent with what is known about the demographic transition: fertility is lower in 

wealthier nations which have high energy consumption. More compelling is the fact that 

the allometric exponent (slope of the log–log plot) is statistically indistinguishable from  

-1/3, as predicted by Equation 3. The same scaling relationship is seen whether fertility is 

measured as total fertility or crude fertility rate. Although several nations have undergone 

significant shifts in fertility and energy consumption, the same pattern is apparent in 

every 5-year time interval since 1970. 



 

13 

A similar dynamic relationship exists across time in the USA from 1850 through 

2000, as shown in Figure 2.2. Each data point represents the average fertility rate and E 

for the USA in 5-year intervals. As E increases over time, fertility decreases. Again the 

slope of the regression is statistically indistinguishable from -1/3. 

Allometric relationships accurately describe the broad scale pattern of change 

from pre-industrial averages of 6.5 births per woman and power consumption of 600 W 

(Livi-Baci 1997) to the modern levels of fertility and power consumption. However, 

given the short period of available data, the dynamic relationship in most nations is 

difficult to assess. A 50% decrease in fertility in South Korea is accompanied by a 6-fold 

increase in E (consistent with allometric predictions) while a similar fertility reduction in 

Cuba occurs with stagnant E. Once the allometric relationship is identified, social and 

economic conditions may explain the residual variation or systematic deviations from the 

regression line in particular regions, i.e. low fertility in many former Soviet states and 

high fertility in many oil-producing nations in the Middle East.  

Figure 2.3 shows fertility rate as a function of power consumption for modern 

humans compared with other mammals. The same scaling law with the predicted 

exponent of -1/3 can account for variation of fertility rate with power consumption, 

estimated as whole-organism metabolic rate for species of mammals, and nations of 

humans, where power consumption is estimated as the per capita share of industrial 

metabolism (E). Fertility rates of primates are known to be lower than other mammals 

(Charnov 1993), and fertility rates of modern humans have decreased from this 

‘ancestral’ primate rate just as predicted by increased power consumption. Figure 2.3 
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shows that the decline in human birth rates is quantitatively consistent with the life-

history patterns of other mammals. 

 
 
2.5 DISCUSSION 
 

Why should human fertility decisions be guided by industrial metabolism, and why are 

these patterns quantitatively similar to those observed in primates and other mammals? 

We hypothesize that parents face a trade off between the number of offspring and the 

energetic investment in each offspring. Such trade-off decisions have been well explored 

by biologists, human behavioral ecologists and economists (Smith & Fretwell 1974, 

Becker & Barro 1988; Kaplan 1996; Mace 1998). 

Here we additionally propose that the perceived energetic investment (including 

material goods and education) required for a child to be competitive in a given society is 

greater in more consumptive societies. We assume that the cost of a raising a child 

increases in direct proportion to E. Our assumption is similar to the mammal reproductive 

allocation assumption made by Charnov (1993). In that model, the observed -1/4 power 

scaling of reproductive rate with mass results from investing a constant proportion of 

energetic resources in each offspring. 

Finally, we hypothesize that the scaling properties of extra-metabolic networks 

are similar to biological networks. The scaling of energy delivery rate with network size 

has been derived for biological networks in terms of mass (West et al. 1999), but mass 

scales linearly with the volume (V) of the metabolic network, i.e. total blood volume 

(Banavar et al. 1999, West et al. 1999). Substituting V for mass in the West et al. model, 

the distance (l) and time (t) it takes for a resource to travel from uptake to consumption 



 

15 

(i.e. the distance from the heart to a capillary) scale as V 1/4 and total energetic rate (E) 

scales as V 3/4. Thus, 

 

l ~ t ~ E 1/3         [2.4] 

 

Thus, biological rates are slowed by the increased time it takes to move energetic 

resources through greater lengths of network in larger organisms. These scaling 

relationships can be generalized to describe the constraints on the efficiency of any three 

dimensional transportation network (Banavar et al. 1999). 

We suggest that in human societies, as in the bodies of organisms, larger networks 

deliver more energy, but with increased total transport time and infrastructure cost. Some 

components of this infrastructure are visible networks: oil pipelines, power grids, and rail 

and highway systems; while other components such as banking systems, governments 

and research programs may function as virtual networks to develop and spread energy, 

information and products. If this infrastructure is described by Equation 2.4, the time 

required to gain energetic resources (E) increases as E1/3. Additionally, as E increases, 

each unit of energy must pass through greater network length (l) incurring increased 

infrastructure costs. 

In our analysis, parents have as many children as they can afford to provision with 

the energetic resources expected in their society. As the cost and time to obtain these 

resources increases in more industrialized nations, the number of children parents can 

support decreases. We propose that the -1/3 power scaling of birth rate reflects the 
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increasing cost of infrastructure and the increasing time and energy required to collect 

and distribute greater quantities of resources to children in more industrialized nations. 

Given the complexity of the networks supplying E, it may be difficult to 

determine empirically whether the time and cost of obtaining E increase with E1/3 or even 

to determine the geometry and dimensions of the networks supplying E; however, we 

suggest that further tests of these hypotheses may be fruitful. 

The data show that variation in human fertility rate across nations, through time, 

and in relation to other mammals, is quantitatively consistent with allometric theory. The 

cross-national comparison has remained consistent for 30 years, and the dynamic changes 

in fertility match expectations based on energetic changes in the USA for 150 years. 

Allometric theory may provide a fruitful framework to link biological and ecological 

approaches with sociological and economic considerations that may jointly influence 

human reproduction. 

We see our analysis as complementary to other explanations of the demographic 

transition as the result of ecological and evolutionary processes (Kaplan et al. 2002). 

After socio-economic variables are considered, fertility has been shown to be influenced 

by population density (Lutz & Qiang 2002) and the diversity of human diseases (Guegan 

et al. 2001). Other social factors—the availability of family planning choices, economic 

conditions, the unusually high energetic reserves of some nations—may also help to 

explain the residual variation around the regression lines in Figure 2.1. This analysis is 

also complementary to other work which seeks to understand the ecological forces which 

shape human cultures, for example, Collard & Foley (2002). 
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The products of agriculture, industry and technology are commonly thought to 

have freed modern humans from energetic and biological constraints. In fact, the limits to 

human population density, historically imposed by food availability and disease, have 

greatly increased from less than 1 km-2 in pre-agricultural societies to 5–25 km-2 in pre-

industrial societies (Cipolla 1972, Livi-Baci 1997). The present densities of 30 km-2 in 

the USA and 140 km-2 in China far exceed the 4 km-2 predicted for a 65-kg mammal 

(Damuth 1981, Peters 1983). However, limits have been raised, but not removed, and 

through reliance on new sources of energy and systems of energy acquisition and 

distribution, humans remain organisms constrained by energy. Per capita energy 

consumption strongly influences the behavioral and economic decisions that ultimately 

limit the sizes of families and the investment in rearing children. Recent evidence 

suggests that the current human population is utilizing natural and industrial systems at 

levels that are not biologically or energetically sustainable (Wackernagel et al. 2002), 

even as the global population continues to increase in size and resource consumption. 

Understanding the energetic constraints to population growth and consumption is vital to 

attaining a globally sustainable human population. 
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Figure 2.1  Annual human fertility rates (births per 1000 per year) plotted on logarithmic 
axes as a function of extra-metabolic energy consumption (E) for 98–116 nations in 6 
periods from 1971 to 1997. Here infant mortality is subtracted from fertility to more 
accurately estimate the number of children actually raised by parents. Empty circles 
represent outliers (all of these nations were major oil producers) not included in the 
regression. The outliers in the lower left of the middle two panels are Latvia and Bosnia. 
The slopes of the 6 regressions are between -0.33 and -0.37. These values are statistically 
indistinguishable from the predicted value of -1/3 (p > 0.10 in all cases). The intercepts 
range from 2.43 to 2.59, with an average r2 of 61%. Inclusion of outliers, excluding the 
effect of infant mortality, and considering total fertility rather than annual fertility has 
little effect on the slope of the relationship. 
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Figure 2.2  Human fertility in the USA as a function of industrial metabolism (E) plotted 
on logarithmic axes. Data represent five-year intervals from 1850 through 2000. Circles 
represent crude fertility rate (births per thousand population) and triangles represent 
lifetime births per woman. The slope for crude fertility is -0.31 (r2 = 0.83) and for total 
fertility is -0.27 (r2 = 0.76). 
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Figure 2.3  Fertility rate of humans and other mammals plotted as a function of power 
consumption. Power consumption is estimated as metabolic rate for mammals and per 
capita industrial metabolic rate for humans. Circles represent mammals, with primates in 
red. Red triangles represent nations and empty triangles are outliers. The black star and 
box represent human hunter-gathers and pre-industrial agriculturalists, respectively. 
Fertility was measured as average number of births per female per year of reproductive 
life for species of mammals and nations of humans using data from 1990 to 1995. 
Metabolic power (B) of mammals was estimated from body mass using the allometric 
regression equations for different orders of mammals (Peters 1983). Hunter–gatherer and 
agriculturalist fertility rates and metabolic consumption are estimated population 
averages (Livi-Baci 1997). The blue line shows the regression equation for annual 
fertility of non-primate mammals, 6.54 B-0.339 (r2 = 0.68, p < 0.001). The red line shows 
the regression for humans, 1.89 E-0.346 (r2 = 0.47, p < 0.001). The dashed line is extended 
to show the fit through the primate data. The exponent values of -0.339 and -0.346 are 
well within the 95% confidence intervals for the predicted value of -1/3. 
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3 AN ENERGETIC EXPLORATION OF MAMMALIAN LIFE HISTORY:  

BIRTH RATE, REPRODUCTIVE EFFORT AND OFFSPRING SIZE  

 

3.1 ABSTRACT 

 
Many features of mammal life history scale with body size, while others appear nearly 

constant across body sizes. I examine the tradeoffs that occur between life history 

characteristics as mammals allocate energy to reproduction. The consumption and 

allocation of energy leads to patterns in offspring size, relative reproductive allocation, 

and birth rates. The analysis suggests a tradeoff between litter size and the interval 

between litters. When juvenile survivorship is incorporated, the tradeoff is linear. As a 

result, birth rates are the inverse of time to independence and reproductive allocation is 

independent of litter size and adult mass.  

The time it takes offspring to grow to weaning size appears to follow the 

predictions of the West, Brown and Enquist (2001) ontogenetic growth model (OGM). 

The OGM is used to calculate that female mammals allocate approximately 15% of their 

basal metabolic energy to reproduction. The analysis shows that larger mammals have 

lower reproductive rates because they spend more time providing energy to grow each 

offspring. The OGM is incorporated into a fitness model that shows how proportional 

investment in offspring may maximize parental fitness. The model points to juvenile 

mortality before and after independence as important factors in determining the optimal 

size at weaning.  
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3.2 INTRODUCTION 

 

Many features of mammal life history scale with 1/4 powers of body size. For example, 

whole-organism metabolism is proportional to mass to the 3/4 power, and birth rate is 

proportional to mass to the -1/4 power (Peters 1983, Reiss 1989). This paper examines 

how birth rates are constrained by metabolism. I use life history theory (Charnov 1993) 

and the West, Brown and Enquist (2001) ontogenetic growth model (OGM) to examine 

the energetic processes that lead to patterns in offspring size, reproductive allocation, and 

birth rates. The OGM is based on the allometric scaling of metabolism and body size 

(Brown et al. 2004) and predicts that organism mass increases sigmoidally with time. 

 Ernest et al. (2003) use mammal life history parameters to estimate that biomass 

production rate (P) scales with mass to the 3/4 power, the same as the scaling of 

metabolism. Charnov (1993, 2001) finds that the mass of offspring at weaning (Mw) 

divided by adult mass (Ma) is a constant value, approximately 30% across all mammals. 

A simple explanation for the scaling of birth rate follows from these two observations. 

The number of births per unit time (b) is equivalent to the amount of biomass produced 

per unit time divided by the amount of biomass per offspring.  Given that P ~ Ma
3/4 and  

Mw ~ Ma, if b = P/Mw, then b ~ Ma
-1/4. 

The -1/4 scaling of b with Ma hinges on parents rearing offspring to a fixed 

proportion of adult size. However, it is not known why relative size at weaning is a 

constant value and why it is about 30%. Offspring could be weaned at some minimum 

viable size, or they could be under parental care until reaching adult size, as occurs in 
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altricial birds (Charnov 2002). This paper examines tradeoffs that might lead to a parental 

care period that lasts until offspring are raised to a consistent proportion of adult size.  

I explore what tradeoffs are, and are not, seen as energy is allocated to 

reproduction. The number of offspring per litter, the relative weaning size (mass at 

weaning divided by adult mass), the interval between litters, and the time invested in 

rearing offspring to weaning all affect birth rates and relative reproductive allocation (the 

percentage of metabolic energy that is allocated to reproduction). Tradeoffs are seen 

between some of these characteristics, while others appear nearly constant across all 

mammals. 

The analysis gives an estimate of the amount of maternal energy that is devoted to 

offspring production. Millar (1977) calculates that relative reproductive allocation (R) is 

slightly higher in small mammals, but he finds most variation in R is due to variation in 

litter size. Here I estimate that R is approximately constant across mammalian body sizes 

and litter sizes. The calculation of R may help to elucidate whether maternal energy is 

diverted from maternal growth, as is suggested by Charnov (2001), or from metabolic 

scope (West et al. 2001, Charnov 1993). 

 

3.3 METHODS 
 

I used data compiled from the literature by Ernest (2003) for adult mass (Ma), mass at 

weaning (Mw), mass at birth (Mb), litter size at birth (Nb), litters/year, gestation time and 

post-partum weaning time for 1198 terrestrial eutherian mammal species. Primates, 

whose life history characteristics are known to deviate from other mammals (Berrigan & 

Charnov 1993), were excluded. From these variables, I calculated relative weaning size  
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(δ = Mw/Ma), time to weaning (Tw = gestation time + post-partum weaning time), the 

inter-litter interval (TI = years/litter) and relative interval between litters (Irel = TI/Tw) 

which measures the delay between provisioning litters. I also used juvenile mortality 

rates from Purvis & Harvey (1995) of 47 mammalian species. 

I used the theoretical growth equations from the OGM to calculate the time 

required to grow from conception to the size at weaning in mammals, and I compared 

those calculations to values in the Ernest dataset. I then used the OGM to calculate the 

energy used in offspring growth. Finally, I developed a model that demonstrates how 

intermediate values of relative offspring size can maximize parental fitness. 

Statistics were calculated using S-plus 2000 and simulations were done using 

Matlab Student version 6.5. In all of the regressions, each datum is a species, and each is 

treated as independent. Least squares (Type 1) regression is used in all cases. Type 1 

regression is appropriate when the independent variable is known with greater certainty 

than the dependent variable, as is the case when mass is the dependent variable (Charnov 

1993). Type 1 regression is used throughout this analysis in order to make consistent 

comparisons between regressions. 

Tw and Mw are important variables in the analyses. Weaning is assumed to be a 

discrete event, although parental provisioning may end gradually. The values in the 

Ernest dataset are gathered from the literature and likely represent a range of definitions 

of weaning time and therefore weaning size. This may be an important source of 

variation in the data.  

Another important variable is litter size at the time of weaning. Litter size is 

usually measured at birth and assumed to be the same at weaning. The effect of juvenile 
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mortality on weaned litter size is discussed and appears to be important to understanding 

reproductive tradeoffs. 

 

 
3.4 RESULTS 
 

The variables used in this analysis are described in Table 3.1. Coefficients and 

confidence intervals for the regressions between life history characteristics are listed in 

Table 3.2. 

 

3.4.1 Allometric Scaling Patterns 

 

Life history characteristics scale with adult mass (Ma), consistent with results reported 

elsewhere (Peters 1983, Reiss 1992, Charnov 1993): birth rate (b) scales with Ma
–1/4; time 

from conception to weaning (Tw) scales with Ma
1/4; mass at weaning (Mw) scales with Ma 

with a slope close to 1 and an intercept of 0.32. Thus, relative size at weaning  

(δ = Mw/Ma) is nearly constant across mammals and averages 0.32. There is some 

variation in δ across taxa, and δ tends to decrease with Ma within a clade (Purvis & 

Harvey 1995).  

Biomass production (Pw, measured as weaned biomass per year) scales as M0.67. 

The 95% confidence interval (Table 3.2) excludes the 3/4 scaling expected by Ernest et 

al. (2003). If litter size at weaning is adjusted for pre-weaning mortality (described 

below), the exponent is raised to 0.71.  However, 0.75 is still outside of the 95% 

confidence intervals of the exponent.  
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3.4.2 Tradeoff Between Litter Size and Time Between Litters 

 

I define the variable Irel as the interval between litters relative to the time from conception 

to weaning (Irel = TI /Tw). Irel measures the delay or overlap between provisioning litters 

(Figure 3.1). When Irel = 1, gestation of a litter begins as soon as the previous litter is 

weaned. Irel > 1, indicates a delay between weaning one litter and gestation of the next 

litter. The value of Irel is the number of litters that could theoretically have been weaned 

sequentially during the interval between litters. Irel < 1 indicates that gestation of the next 

litter begins before the previous litter is weaned. 

Since mammals provision their offspring until weaning, it is necessary to know 

the size of litters at weaning in order to calculate the energy used in reproduction. 

However, litter size is usually measured at birth. Litter size at birth (Nb) is an 

overestimate of weaned litter size (Nw) if there is any mortality during the parental care 

period. It is a biased estimate if there is differential mortality in large litters.  

I use juvenile mortality data to estimate Nw from Nb. Data from Purvis & Harvey 

(1995) show a significant decline in survival to maturity (Sα) as Nb increases  

(Sα = -0.436 Nb
 -0.32, r2 = 0.25, n = 47, p < 0.001).  Promislow & Harvey (1990) also find 

a significant correlation between juvenile mortality rate and Nb, even when controlling 

for adult mortality.  

Juvenile mortality may be different during the period of parental care and after 

parental care, so the rate of survival to maturity does not translate exactly to the rate of 

survival to weaning. However, if there is increased mortality in larger litters, it likely 
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occurs prior to weaning when large litters present the maximal energetic cost to the 

mother. Assuming that survival to weaning shows the same scaling with litter size as 

survival to maturity, I estimate that Nw equals Nb multiplied by the juvenile survival rate 

calculated from Purvis & Harvey: Nw ~SαNb ~ Nb
 0.68. 

Nb and Irel both vary with body size (Figure 3.2) and with each other (Figure 

3.3a). Nb and Irel are more correlated with each other than they are with body size (Table 

2).  There is also a strong positive correlation between Irel and Nw (Figure 3.3b). The 95% 

confidence interval for the slope of the regression includes 1, and the 95% confidence 

interval for the intercept includes 0 (Table 2), indicating a 1:1 tradeoff between Nw and 

Irel. When Nw = 1, Irel = 1. When a litter of size Nw is weaned, the mother waits a period of 

NwTw to begin the next litter. This indicates that the rate at which offspring are weaned is 

not affected by Nw.   

Since b is the product of Nb and litters per year, the tradeoff between Nb and Irel 

generates b nearly proportional to Tw
-1 (Figure 3.4, Table 3.2). Although the residuals of 

the regression of b on Tw are significantly correlated with Nb (F = 64.02, n = 401,  p < 

0.001), b is very close to the inverse of Tw across all species.  
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3.4.3 Testing the Ontogenetic Growth Model 

 

The OGM predicts that mass follows a sigmoidal curve with time defined by  

dm/dt = am3/4 – b1m, where a is a scaling constant based on the energy to create and 

maintain cells and is estimated to be 91g1/4yr-1 for mammals, b1 =  aM -1/4, and M is 

maximum attainable mass of a species. The OGM assumes that observed adult size (Ma) 

equals M. The growth equation can be integrated to find the time it takes to reach size δ 

(Figure 3.5a). 

 

Tw = -4ln(1-δ1/4)/(aM -1/4)       [3.1] 

 

Observed weaning times can be compared to the OGM prediction for weaning time 

(Equation 3.1). The prediction shows a 1:1 correspondence with the data, and the 

regression explains 69% of the variance (Figure 3.6a). Residuals from the regression are 

not correlated with Nb (F = 0.994, n = 297, p = 0.341). Equation 3.1 can also be used to 

predict gestation time if relative size at birth is substituted for δ. The regression between 

predicted and observed gestation time is also significant (r2 = 0.85, n = 602, p < 0.001), but 

observed gestation times are about 20% longer than predicted by Equation 3.1 (Figure 

3.6b). 
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3.4.4 Energy for Growth and Relative Reproductive Output 

 

If offspring grow according to the OGM, one can calculate the amount of energy each 

offspring uses to grow to size δ and the percent of maternal energy that is allocated to 

reproduction (R, Figure 3.5b). The calculation of R assumes offspring grow via the OGM, 

weaning is a discrete event, and all maternal provisioning occurs via lactation. To 

simplify the calculations, initially assume Nb = 1 and Irel = 1. Nb > 1 is discussed below. 

Appendix 3.7 shows calculations of the energy required to grow from conception 

to weaning (Ew). 

 

Ew = MEc/mc
 (-4ln(1- δ1/4) - 4δ1/4 -2δ1/2 - 4/3δ3/4)    [3.2a] 

 

Ec and mc are metabolic constants describing the energy to create a cell and the 

mass of a cell. They are assumed constant for all mammals and are estimated in the 

OGM. Thus, the energy required to grow to size δ varies only as a function of maximum 

size (M) and δ. 

The metabolic energy expenditure of the mother (Em) can be integrated over the 

parental care period. Maternal basal metabolic rate B = B0M 3/4. B0 is a scaling constant 

for mammals such that B0 = a (Ec / mc). Since the period of offspring growth to size δ is 

Tw, maternal metabolic energy expended over the parental care period is Em = BTw. Using 

Equation 3.1 for Tw,     

 

Em = -4ln(1- δ1/4) MEc/mc       [3.3a]  
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Relative reproductive effort (R) can be calculated as the percentage of maternal 

metabolism that is allocated to reproduction so that R = Ew / Em. 

 

R = -4ln(1- δ1/4) - 4δ1/4 -2δ1/2 - 4/3δ3/4 
                     -4ln(1- δ1/4)       [3.4a] 

 

R is independent of the scaling constants and adult mass, and is only a function of δ. Ew, 

Em and R are shown as functions of δ in Figure 3.7. When δ = 0.32, Equation 3.4a gives  

R = 0.15. Thus, Equation 3.4a predicts that 15% of maternal metabolism is allocated to 

growing offspring. 

The calculations of R, Ew, and Em are based on mammals for which Nb = 1 and  

TI = Tw. The calculations can be generalized for Nb > 1. The energy to raise a litter of size 

Nw is Ew-lit = NwEw. When Nw > 1, then TI > Tw. Maternal energy available for 

reproduction can be integrated from the time one litter is conceived until the time the next 

litter is conceived (TI). Integrating over TI implies that maternal energy is stored or 

replenished during periods in which she is not directly provisioning offspring. Then  

Em-lit = BTI and Rlit = (NwEw ) / (BTI). This calculation of Rlit is shown as a function of Ma 

for the species in the Ernest data (Figure 3.8). Rlit ranges from 0.02 to 0.54 with a mean of 

0.16 (95% CI = 0.16 ± 0.01). There is no significant effect of Ma on Rlit (F =1.07, n = 

229, p = 0.301); nor is there an effect of Nb on Rlit (F = 2.0, n = 229, p = 0.159). 

Since maternal energy (Ew) is integrated over the inter-litter interval (TI ), and 

larger litters are associated with proportionally larger TI (Figure 3.3b), the reproductive 

effort to raise a litter is independent of litter size. Thus,  Rlit = R.  
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3.4.5 Reproductive Energy Diverted from Growth 

 

The OGM assumes that the mass of an adult (Ma) is equal to maximum mass (M ), which 

is the size where maintenance energy equals metabolic intake. Thus, reproduction is 

fueled from metabolic scope—the difference between field and basal metabolic rate. 

Alternatively, Charnov (2001) suggests that reproductive energy is diverted from growth; 

mammals stop growing at some proportion µ of M, and the energy for reproduction 

equals metabolism at size µM minus maintenance metabolism at size µM (Figure 3.9). 

If µ <1, the calculations for Ew, Em  and R change. Previously, δ was calculated as 

Mw/Ma based on the assumptions that µ =1 and Ma = M. However, if, as according to 

Charnov (2001) Ma = µM, then we can define a term, δ1, for offspring size relative to the 

theoretical maximum mass (M) in the OGM: δ1 = µδ. New equations for Ew, Em  and R are 

obtained by substituting δ1 for δ and µM for Ma: 

 

Ew = MEc/mc
 (-4ln(1- δ1

1/4) - 4δ1
1/4 -2 δ1

1/2 - 4/3δ1
3/4)    [3.2b] 

 

Em = µ3/4MEc/mc
 (-4ln(1- δ1

1/4))      [3.3b] 

 

R = Ew/Em = ((-4ln(1- δ1
1/4)-4δ1

1/4 -2 δ1
1/2–(4/3) δ1

3/4))/(-4ln(1- δ1
1/4) µ3/4)  [3.4b] 

 

Charnov (2001) uses a dimensional approach to estimate that  µ = 0.7. He further 

calculates that the maternal energy that is diverted from growth to reproduction is  
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Erep = [ 1 – µ1/4] Em (Figure 3.9b). If µ is set such that all reproductive energy is diverted 

from growth, then Erep must equal Ew.  Given that the empirical value of δ = 0.32 (Ernest 

2003), then Erep = Ew when µ = 0.54. This estimate of µ is significantly different from   

µ = 0.7 (t = -15.02, n = 229, p < 0.001).  

R is not sensitive to the different predicted values of µ. Equation 3.4b gives  

R = 0.15 for 0.7 < µ <1. If µ = 0.54, R = 0.14. Thus, regardless of whether reproduction is 

fueled by metabolic scope or from energy diverted from growth, relative reproductive 

effort is approximately 15%. 

 

3.4.6 Optimal Relative Size at Weaning 

 

If offspring growth from conception to weaning is described by the OGM, then the OGM 

can be used to model maternal fitness as a function of δ. Fitness of the mother (W) is the 

product of birth rate (b), survival to maturity (Sα) and expected adult lifespan (Charnov 

1993). Assuming that δ does not affect maternal lifespan, then W ~ bSα.  

Across species b = Tw
-1 (Figure 3.4) because of the tradeoff between Nw and Irel. I 

assume that b = Tw
-1 within species as well as between species so that: 

 

W ~ Sα /Tw         [3.5] 

 

Tw  is a function of δ (Equation 3.1.), and Sα can also be defined as a function of δ. 

Assume pre-weaning mortality rate (Z1) is constant with respect to δ. Assume that 

parental care ends at weaning so that post-weaning juvenile mortality is greater than pre-
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weaning mortality. Also assume that post-weaning mortality rate is a function of mass 

(and also of time, since mass changes over time), so that the shape of mortality looks 

something like that shown in Figure 3.10. Define Z2 as the average mortality rate from Tw 

(which is determined by δ in Equation 3.1) to the time at which maturity is reached (Tα). 

Z2 will decrease as δ increases because mortality will be averaged over a period in which 

mass is greater. 

The particular functions for Z1 and Z2 are unknown. Purvis & Harvey (1995) 

suggest that juvenile and adult mortality scale as M –1/4, so set Z1 = M -1/4 assuming the 

scaling pre-factor is 1. Z1 is constant within a species but scales with mass across species. 

Set Z2 = pZ1δ-q where p > 1 and q > 0, so that initially Z2 is greater than Z1, but Z2 

decreases with δ. Sα equals survival from 0 to Tw multiplied by survival from Tw to Tα: 

Sα = exp(-Z1Tw) exp(-Z2(Tα- Tw)). Rearranging terms gives:   

 

Sα = exp[(Z2-Z1)Tw -Z2Tα]       [3.6] 

 

Substituting Equation 3.6 into Equation 3.5 gives: 

 

W ~ exp[(Z2-Z1)Tw -Z2Tα] /Tw       [3.7] 

where Tw = -4ln(1-δ1/4)/(aM-1/4)  

 

For any given species, a, M, Tα are constants given by the OGM.  Thus, W varies only as 

a function of δ, Z2 and (Z2 - Z1).  
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  The asymptotic shape of the OGM growth curve can generate an intermediate δ 

that maximizes W.  Equation 3.1 enables calculating Tα. Since the OGM growth curve is 

asymptotic, maximum mass (M) is never reached. I assume Ma is 95% of M, so 0.95 is 

substituted for δ in Equation 3.1. (Note that if µ<1 then µ should be substituted for δ). W 

is calculated with simulations since there is no explicit solution for maximizing W as a 

function of δ. By substituting a = 91g1/4yr-1 and choosing M = 1000 g, p = 4 and q = 0.5 

in Equation 3.7, then b, Z2, Sα and W can be shown as functions of δ (Figure 3.11). In this 

case, W is maximum when δ is 0.4.  

The optimal relative size at weaning that maximizes fitness is invariant with 

respect to mass. In the simulations, optimal δ increases as p and q increase. The variable 

p indicates the increase in mortality once parental care ends, and q indicates the degree of 

size dependence of mortality after weaning. Thus, the height and shape of the post-

weaning juvenile mortality function determine the relative weaning size that maximizes 

fitness. 

 

3.5 DISCUSSION 
 

The results show that the proportion of maternal metabolism given to offspring 

and the relative size at weaning are invariant with respect to adult mass in mammals 

(Figure 3.8), but there are differences in energy allocation. Smaller mammals have 

slightly larger litters and longer relative inter-litter intervals (Figure 3.2). There is a 

tradeoff between litter size and the amount of time between weaning one litter and 

conceiving the next. The time and energy required to grow to the size at weaning can be 
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calculated by the OGM. A fitness model which incorporates ontogenetic growth shows 

that intermediate relative weaning sizes can maximize fitness. 

The tradeoff between litter size and the interval between litters is evident only 

when the interval between litters is measured relative to weaning time. That is, a small 

mammal with a large litter may have a short delay between litters if measured in number 

of days between litters, but a long delay relative to the time spent providing care for each 

litter. For example, the rodent Sigmodon hispidus has 2 litters each year while Equus 

zebra has only one litter every year and a half. However, when measured relative to 

weaning time, Irel for the rodent is 4.34 while Irel for the zebra is 0.9. The tradeoff 

between Nw and Irel illustrates the importance of rescaling variables of interest by 

biological time. Once the effect of body size (and its effect on Tw) has been accounted 

for, one can examine other biologically interesting tradeoffs (Brown et al. 2004). 

The delay between litters increases in proportion to litter size once increased 

juvenile mortality in large litters is accounted for. Thus, a mammal of a given size 

produces a similar number of offspring per year regardless of whether they are in large, 

widely spaced litters or in small litters that are born close together.  

This tradeoff suggests that mammals that have large litters are capital breeders, storing or 

replenishing energy in the time between provisioning litters. Mammals with smaller 

litters may be considered income breeders that are constantly allocating energy to 

provision a small litter. Regardless of which strategy is used, the time it takes to 

provision offspring with energy limits the rate at which offspring can be produced. Larger 

mammals, which provide more energy to each offspring, space their offspring further 

apart. 
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Since the energetic demands of offspring are highest just before weaning, mothers 

with small litters may store energy early in gestation so that it may be expended later in 

lactation. It should be interesting to see what role seasonality plays in the tradeoff 

between litter size and the inter-litter interval. One might expect mammals that live in 

highly seasonal environments to space their litters to correspond with favorable seasons. 

These mammals would be predicted to have larger litters that are spaced further apart. 

Larger litters in more seasonal environments are consistent with the findings of Millar & 

Innes (1985) that litter size in Peromyscus maniculatus increases with both latitude and 

elevation. 

The OGM accurately predicts time to weaning (Figure 3.6a). In the OGM, the rate 

at which energy is converted to growth is controlled only by mass relative to maximum 

mass. Since offspring growth trajectories follow the OGM, there is an implication that 

offspring growth rates are limited primarily by their own abilities to assimilate energy 

rather than by the maternal supply of energy. In other words, once mothers supply 

sufficient energy to their offspring, the offspring grow themselves according to the OGM, 

and additional maternal energy does not speed growth any further.   

Interestingly, gestation times are more strongly correlated with model predictions 

than are post-partum weaning times; however, gestation times are consistently 

underestimated by the OGM by about 20% (Figure 3.6b). This could be explained if 

maternal energy supply were limiting growth in utero.  McNab (1980) found that 

mammals with higher energy intake rates for their size have offspring with higher growth 

rates. Pregnant mammals might not be able to supply sufficient energy to maximize 

offspring growth if they are allocating resources to other activities such as defense and 
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resource acquisition. However, one might expect maternal energy supply to be most 

limiting when litter size is larger, but there is no correlation between litter size and the 

residuals of the OGM predictions. Maternal energy supply may not limit growth in large 

litters if energy is stored in the interval between litters, as is implied by the tradeoff 

between Nw and Irel. 

In the cross-species analysis, there does not appear to be a correlation between 

litter size and relative size at weaning (F = 1.257, n = 334, p = 0.263). This is interesting 

since many studies report a tradeoff between litter size and offspring size within species 

or between species when adult mass is held constant, e.g., Millar (1986).  

In this analysis, mothers allocate approximately 15% of their metabolism to 

growing offspring throughout their reproductive lives. The calculation of reproductive 

effort does not determine whether this energy is diverted from growth or from metabolic 

scope. However, it does suggest a testable hypothesis. If all reproductive energy is 

diverted from growth, then this analysis predicts not only that µ is constant across all 

mammals, as predicted by Charnov (2001), but also that µ = 0.54 which is lower than 

Charnov’s prediction of µ = 0.7. The value of µ changes the size of fastest growth rate 

relative to adult mass (Ma). Growth rate is fastest at 0.32M, where M is the theoretical 

maximum mass predicted by the OGM. Since µ = Ma/M, Charnov predicts that the point 

of fastest growth is at 0.45Ma; this analysis predicts it at 0.57Ma, and the OGM predicts it 

at 0.32Ma. Initial examination of growth curves in the literature indicates that 

distinguishing among these hypotheses may be difficult. 

The OGM appears to describe growth trajectories from conception to weaning. 

The asymptotic shape of the growth curve can generate an intermediate optimal size at 
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weaning that maximizes parental fitness (W) which is proportional to bSα. b declines 

sharply as δ increases when δ is small, but the decline in b tapers off as δ becomes large 

(Figure 3.11). Thus, many Sα functions that are nearly linear with δ will have a more 

shallow slope than b for small δ, but a steeper slope than b for large δ. These conditions 

produce a W that is maximized when δ is an intermediate value. It remains an open 

question to specify biologically realistic functions for Sα and juvenile mortality that 

produce an intermediate optimum δ. 

Female mammals face a trade off between investing in existing offspring and 

conceiving a new litter. The fact that δ (measured relative to Ma) is consistently near 0.3 

suggests that it represents an optimal allocation decision by the mother. The model 

developed here generates an intermediate optimal δ while other life history models have 

not. The model points to the difference in juvenile mortality before and after weaning as 

important life history parameters. The approach used here may begin to explain why 

parental investment in mammals stops after offspring reach a fixed proportion of adult 

size. 
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3.7 APPENDIX: CALCULATIONS OF OFFSPRING ENERGY REQUIREMENTS  

 

The metabolism used for maintenance and growth of an organism is B = B0m3/4. Assume 

that mass changes according to the West et al. ontogenetic growth model. Then the total 

energy used by offspring during the parental care period (Ew) is integrated from the mass 

at conception to the mass at weaning.  
                               Tw

 

Ew = ∫0Tw
 B0(mt)3/4 dt         [3.8] 

 

From the growth model: dm/dt = am3/4 – bm. Assuming mt ≈ 0 at t = 0 then mass at time t 

is described by: 

 

mt = [(a/b) (1-e-bt/4)]4        [3.9] 

 

Substituting Equation 3.9 into Equation 3.8 gives: 
                                Tw 

Ew = ∫0 B0 ((a/b)4 (1-e-bt/4)4)3/4 dt 

= B0(a/b)3  ∫0Tw (1-e-bt/4)3 dt 

= B0(a/b)3  ∫0 Tw (1-3e-bt/4+3e-bt/2-e-3bt/4) dt 

= B0(a/b)3   [Tw + 12/b(e-b Tw /4 -1) -6/b(e-b Tw/2 - 1) + 4/(3b) (e-3b Tw /4 - 1)] 

  Substituting Tw = -4ln(1- δ1/4)/b  

= B0(a/b)3 [-4ln(1- δ1/4)/b + 12/b(eln(1- δ1/4)-1) - 6/b(e2 ln(1- δ1/4)- 1) + 4/(3b) (e3 ln(1- δ1/4)-1)] 

  Simplifying: 

= B0(a/b)3 b-1{-4ln(1- δ1/4) + 12((1- δ1/4)-1) -6[(1- δ1/4)2-1] + 4/3[(1- δ1/4)3-1)]} 

  Substituting B0 = aEc/mc and expanding terms: 

= Ec/mc (a/b)4 {-4ln(1- δ1/4) + 12(- δ1/4) -6 [(1- 2δ1/4 + δ1/2) -1]  

+ 4/3[(1- 2δ1/4 + δ1/2-[δ1/4 -2δ1/2 + δ3/4]-1)]} 

Simplifying and substituting M = (a/b)4 gives 

 

Ew = Ec/mcM [-4ln(1- δ1/4) - 4δ1/4 -2δ1/2 - 4/3δ3/4]    [3.10] 
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Table 3.1  Definitions of life history variables 
 
Variable Definition Source or calculation 

A Metabolic scaling constant in the OGM 91g1/4 per year from West et al. (2001) 

B Organism metabolic rate B = B0M3/4 

B0 Metabolic scaling constant West et al. (2001) 

B1 Metabolic maintenance constant in the OGM West et al. (2001) 

b Birth rate (births per year) b = Nb (litters/year) 

δ Relative size at weaning Mw/Mα 

Ec Energy to create a cell in the OGM West et al. (2001) 

Em Metabolic energy of the mother  Em = -4MEc/mcln(1- δ1/4)  

Erep Energy for reproduction diverted from growth [1 – µ1/4] Em 

Ew Energy required to grow to size δ Ew = MEc/mc (-4ln(1- δ1/4) - 4δ1/4 -2δ1/2 - 4/3δ3/4)  

Irel Time between litters relative to weaning time Irel = TI/Tw 

Nb Litter size at birth Ernest (2003) 

Nw Litter size at weaning, adjusted for mortality Nw = Nb
0.68 

M Maximum attainable mass West et al. (2001) 

Ma Observed adult size Ernest (2003) 

Mb Mass at birth Ernest (2003) 

Mw Mass at weaning Ernest (2003) 

mt Mass as a function of time in the OGM West et al. (2001) 

mc Mass of a cell West et al. (2001) 

µ Adult size relative to maximum size µ  = Ma/M 

P Biomass production rate (based on Nb)  P = MbNb (litters/year)  

Pw Weaned Biomass Production Rate Pw = MwNw (litters/year) 

R Relative Reproductive Effort R = Ew/Em 

Sα Survival to size at maturity Sα = exp[((Z2-Z1)*Tδ) –Z2Tα] 

TI Time between birth of each litter years/litter from Ernest (2003) 

Tw 

 

Time from conception to weaning 

 

Empirical data from Ernest (2003)  

Predicted by the OGM: Tw = -4ln(1-δ1/4)/(aM-1/4) 

W Fitness W ~ exp[((Z2-Z1)*Tw) -Z2Tα] /Tw 

Z1 Juvenile mortality prior to weaning Z1 = M1/4 

Z2 Juvenile mortality after weaning Z2 = pZ1δ
-q where p >1, 0<q<1 

Z3 Adult mortality Z3  ~ M1/4 
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Table 3.2  Regression statistics of life history variablesa 

 

 

 Intercept Intercept 95% CI 

 
 

Slope 

 
Slope 95% 

CI r2 N 

b vs Ma 1.39 1.34 to 1.45 -0.26 
-0.28 to -

0.24 0.64 548 

Mw vs Ma -0.33 -0.38 to -0.27 0.93 0.92 to 0.95 0.97 339 

Tw vs Ma -1.24 -1.27 to -1.21 0.24 0.23 to 0.25 0.83 575 

P vs Ma 1.13 1.04 to 1.22 0.67 0.64 to 0.69 0.91 247 

Pw vs Ma 0.84 0.76 to 0.92 0.71 0.69 to 0.74 0.93 247 

TI vs Ma 0.70 0.65 to 0.76 -0.12 
-0.14 to -

0.11 0.39 393 

Nb vs Ma 0.77 0.74 to 0.80 -0.13 
-0.14 to -

0.12 0.42 1065 

Irel vs Nb 0.03 0.00 to 0.07 0.66 0.59 to 0.73 0.46 401 

Irel vs Nw 0.03 0.00 to 0.07 0.97 0.87 to 1.07 0.46 401 

Sα vs Nb -0.37 -0.44 to -0.17 -0.32 
-0.48 to -

0.19 0.25 47 

b vs Tw 0.17 0.09 to 0.25 -1.08 
-1.02 to -

1.14 0.78 401 
 
a All variables are log10 transformed. Least squares (Type 1) regression is used. The intercept indicates the 
scaling pre-factor, the slope of the regression indicates the scaling exponent and N indicates the number of 
species in the regression. All regressions are significant (p <0.001). 
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Figure 3.1  Events that delineate the time to weaning and inter litter interval. The relative 
time between litters (Irel) equals TI /Tw. Here the time to wean the Nth litter is less than the 
interval between litters, so Irel >1.

Conception 
of litter N 

Birth Weaning Conception 
of litter N+1 

           Time to weaning (Tw) 

Inter litter interval (TI) 



 

46 

 
 
 
 

 

 
Figure 3.2  Litter size and relative time between litters as a function of adult mass. 
(a) Litter size at birth (Nb) as a function of adult mass (Ma). Regression statistics appear 
in Table 2. (b) Relative time between litters Irel as a function of adult mass (Ma). Irel > 1, 
indicates a delay between weaning one litter and gestation of the next litter. Irel < 1 
indicates that the next litter is conceived before the previous litter is weaned. Regression 
statistics appear in Table 2.

b 

a 
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Figure 3.3  Relative time between litters as a function of litter size. 
(a) Relative time between litters Irel as a function of litter size at birth (Nb).  
The dashed line is the 1:1 line and the solid line is the regression line. Regression 
statistics appear in Table 2. (b) Relative time between litters Irel as a function of estimated 
litter size at weaning (Nw). Nw equals Nb at birth adjusted by juvenile survival rate that 
scales with Nb

 0.32, from data reported in Purvis & Harvey (1995). The dashed line is the 
1:1 line and the solid line is the regression line which is indistinguishable from the 1:1 
line. Regression statistics appear in Table 3.2. 

a 

b 
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Figure 3.4  Birth rate versus time to weaning. The dashed line is the -1:1 line and the 
solid line is the regression line. Regression statistics appear in Table 2.  
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Figure 3.5  Mass and metabolism as functions of time according to the OGM. (a) The 
blue curve shows mass as a function of time. Growth occurs via the equation dm/dt = 
amt

3/4 – b1mt where mt is mass at time t, and a and b1 are constants. Adult mass (Ma) 
equals theoretical maximum size (M) for this hypothetical 1000 g mammal. Growth from 
conception to the mass at weaning (Mw = δMa) requires time Tw and growth to Ma requires 
time Tα. (b) The blue curve shows metabolism as a function of time for the same 
hypothetical 1000g mammal. Metabolic rate (Bt) is a function of mass at time t:  
Bt = B0mt

3/4 where B0 is a scaling pre-factor. The energy (Ew) required to grow to size Mw 
is B0mt

3/4 integrated over time period Tw as indicated as the red shaded area. The maternal 
metabolism integrated over this same time period is B0Ma

3/4Tw and is represented by the 
green shaded area.  
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Figure 3.6  Observations versus predictions of the OGM. (a) Time from conception to 
weaning. The dashed line is the 1:1 line and the solid line is the regression line: Observed 
Tw = 1.01(Predicted Tw) – 0.03 (r2 = 0.69, n = 297, p < 0.001. The 1:1 line is within the 
95% CI of the regression slope). (b) Gestation time. The dashed line is the 1:1 line and 
the solid line is the regression line: Observed time to gestation = 1.22 Prediction – 0.003 
(r2 = 0.85, n = 602, p < 0.001). 

a 
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Figure 3.7  The energy for offspring to grow to the relative size at weaning (δ). The 
metabolic energy of the mother (Ew) integrated over the parental care period (Em ) and 
relative reproductive effort (R = Ew / Em) are shown as functions of δ. R, Ew, and Em are 
calculated at 0.1 intervals of δ. The observed value of δ is indicated by the dashed vertical 
line.
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Figure 3.8  Relative reproductive effort (R) as a function of adult mass. Mean R is 0.16 
and is indicated by the dashed line. Although there is substantial variation in R, R is not 
significantly influenced by Ma (F = 1.07, n =229, p = 0.301). 
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  Ba 

Figure 3.9  Mass and metabolism as functions of time with reproductive energy diverted 
from growth. (a) Mass as a function of time according to Charnov (2001). Growth is 
similar to growth in the OGM (Figure 3.5a), but growth ceases at some fraction, µ, of 
theoretical maximum mass, M. In this example, µ = 0.54. As a result Ma =µM as 
indicated by the solid blue line, and Tα  is shortened. (b) Metabolism as a function of 
time when growth follows the trajectory described by Charnov (2001). Ew and Em are 
the same as in Figure 3.5b. Charnov suggests that the energy available for reproduction 
(Erep) is equal to the energy diverted from growth to the theoretical maximum mass M. 
In the calculations presented here, Erep = Em when µ = 0.54. 
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Figure 3.10  A schematic diagram of mortality rates as a function of time from birth to 
maturity. Z1 is the juvenile mortality rate during the parental care period and is assumed 
to be constant. Z2 is the juvenile mortality rate between weaning and adult size. Z2 is a 
declining function of mass (m), therefore it declines over time as the organism grows. Z3 
is the adult mortality rate and is assumed to be constant. The figure is modified from 
Charnov (2001). 
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Figure 3.11  Parental fitness (W), annual birth rate (b), annual juvenile mortality rate (Z2) 
and survival to maturity (Sα) as functions of relative size at weaning (δ). In this 
simulation, p = 4, q = 0.5, and Z2 = pZ1δ-q. These values generate Sα which is maximum 
near the mean value of δ from Ernest (2003), indicated by the dashed line. 
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4 THE EFFECT OF COLONY SIZE ON FORAGING ACTIVITY IN ANTS:  

 THEORY AND OBSERVATIONS FROM THE GENUS POGONOMYRMEX 

 

4.1 ABSTRACT 

 
The Allometric Network Travel and Search (ANTS) model was developed to describe 

optimal colony foraging as a function of colony size. Field observations of 

Pogonomyrmex rugosus, P. maricopa and P. desertorum were conducted in New Mexico 

and Arizona in the summers of 2003 and 2004 to test the ANTS model. The model 

predicts time spent traveling from the nest to seed search locations as a function of 

colony size, and observations were in quantitative agreement with the model. The density 

of foraging ants was highest for large colonies, in qualitative agreement with the model. 

However, the ANTS model did not account for one apparent advantage of large colony 

size. Large colonies appear to minimize seed search times by foraging in areas with high 

seed density, including areas in the territories of smaller colonies.  

Large and small colonies appear to employ different foraging strategies, each 

designed to minimize foraging time such that foraging times of individual ants are very 

similar across a 30-fold difference in colony size. These similar foraging trip times 

suggest that the metabolic intake rate of colonies scales isometrically with forager 

population size. Because large and small colonies employ these different strategies, 

otherwise ecologically similar colonies may be able to coexist in the same community. 

This chapter is coauthored by Bruce T. Milne and is currently in preparation for 

publication. 
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4.2 INTRODUCTION 

 

Optimal foraging theory assumes that animals have evolved foraging behaviors that 

maximize their return on investment in terms of time and energy (Stephens & Krebs 

1986). Central place foragers are constrained in that they must travel to and from a 

central place while acquiring resources. Central place foraging theory predicts how such 

foragers maximize net energy intake based on food selectivity and the cost of traveling 

from the nest to the food and back again (Orians & Pearson 1979).   

Harvester ants have frequently been used to test optimal foraging theory, 

particularly central place foraging theory (Traniello 1989, Bailey & Polis 1987, Weier & 

Feener 1995, Fewell 1988, Morehead & Feener 1998). These studies have focused on the 

foraging trips of individual ants, which often fail to satisfy theoretical predictions. 

Morehead & Feener (1998) suggest that some foraging ants may not follow theoretical 

predictions because they violate the unstated assumption that all foragers behave 

independently of one another.  

We present a foraging model that explicitly assumes that foraging ants in a colony 

do not behave independently of one another. Instead, we assume that foragers behave to 

maximize the fitness of the colony (Oster & Wilson 1978). The distribution of foragers 

and resources in the territory areas of harvester ant colonies affect the rate of resource 

acquisition of the colony (Brown & Gordon 2000) and ultimately may affect reproductive 

success (Gordon & Wagner 1997). We suggest that the size of a colony is an important 

component of its design that influences the way in which colonies acquire resources from 

the environment. Here we present a model that predicts how the number of foragers in a 
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colony affects optimal foraging behavior. We also present observations of 

Pogonomyrmex foraging activity in the Chihuahuan Desert and short grass prairie of New 

Mexico and compare those observations to model predictions. 

  

4.2.1 Colony Size 

 

The size of an ant colony may be measured in a number of ways: total colony biomass, 

territory area, nest volume, or total number of workers.  Here we focus on number of 

workers, which ranges over eight orders of magnitude across all known ant species 

(Kaspari & Vargo 1995). The Pogonomyrmex species in this study are similar in diet, 

behavior, and temperature tolerance (Johnson 2000), but their asymptotic colony sizes 

range from 400 to 10,000 workers per colony (Table 4.1). Asymptotic colony size is 

reached after several years, after which time average colony size remains relatively 

constant despite annual and seasonal fluctuations (Gordon 1995a, Johnson 2000).  

Number of workers is an ecologically important attribute of a colony.  It affects 

competitive ability (Holway & Case 2001), the latitudinal distribution of species (Kaspari 

& Vargo 1995), territory area (Gordon 1995a) and foraging strategy (Beckers et al. 1989, 

Oster & Wilson 1978, Davidson 1977).  

Number of foragers is a useful index of colony population size. The foragers 

retrieve food from the environment to supply the metabolic needs of the colony. The rate 

at which a colony acquires resources can be estimated from the number of foragers and 

the average rate at which each forager retrieves food.  
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4.2.2 An Allometric Understanding of Ant Foraging Networks 

 

Allometry provides a theoretical explanation for the ecologically important relationships 

between organism size and biological rates (Brown et al. 2004). Allometric theory posits 

that the properties of metabolic networks scale non-linearly with body size, resulting in 

biological rates that also scale non-linearly with body size.  

Allometric theory is relevant to the study of ant foraging behavior. Colony size has 

a nonlinear effect on territory area in Solenopsis invicta (Tschinkel et al. 1995) and on nest 

volume, colony growth rate and seed collection efficiency in Pogonomyrmex badius 

(Tschinkel 1999). Patterns of foraging activity constitute networks that function to 

distribute information (Adler & Gordon 1992), explore territory (Gordon 1995b), establish 

foraging ranges (Adler & Gordon 2003), recruit workers and retrieve resources (Beckers et 

al. 1989). Some of these networks are virtual, or at least ephemeral and poorly defined, 

although many trunk-trail foragers, including P. rugosus, may forage in densely packed, 

highly organized columns which leave physical trails in the landscape. 

Jun et al. (2003) proposed an allometric ant foraging model which hypothesized 

that fractal foraging trails cause foraging times to be a nonlinear function of forager 

population size. Here we do not specify the geometry of foraging trail networks; rather, we 

investigate the effect of the size of a foraging network (measured by the number of 

foragers) on foraging times and the distribution of foragers in the territory area.  
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4.3 DESCRIPTION OF THE ANTS MODEL 

 

The Allometric Network Travel and Search (ANTS) model examines how the size of a 

network of foragers affects optimal foraging behavior and rates of resource acquisition. 

The model predicts that foraging distances and times will be non-linear functions of 

forager number.  

The model describes foraging by stationary colonies that consume stationary 

resources. It compares colonies that differ fundamentally only in forager numbers and the 

distribution of those foragers in the colony territory. It assumes the foragers are identical 

in their abilities to search for, choose and transport seeds, and all colonies are assumed to 

consume energetically equivalent food.  The model is based on observations of 

Pogonomyrmex foragers that maximize energy gain by minimizing the foraging time of 

individual ants (Fewell 1988, Morehead & Feener 1998, Weier & Feener 1995). Since 

Pogonomyrmex foragers begin a new foraging trip immediately after delivering a seed to 

the nest, seed intake rate is proportional to the number of foragers divided by the average 

time of a foraging trip. Thus, for a given number of foragers, minimizing foraging trip 

time maximizes the metabolic intake rate of the colony.  

The goal is to determine how a colony can minimize the average time of a 

foraging trip (Tf ) given a number of foragers (F). The time to complete a foraging trip 

can be divided into 1) time to complete outbound travel to a search location, 2) time to 

search a patch, and 3) time of inbound travel back to the nest (Traniello 1989, Weier & 

Feener 1995). Here, travel time (Tt) is the average time a forager spends traveling to and 
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from a search location. Generally, a traveling forager moves rapidly in a relatively 

straight path.  

The average time spent actively searching for seeds is Ts. Searching is 

characterized by slower, diffusive movement and frequent stops to examine patches of 

grass or depressions in soil which are likely to harbor seeds. Both Tt and Ts are mean 

values for all foragers in a colony; the average duration of a foraging trip is the sum of Tt 

and Ts. 

 

Tf = Ts + Tt         [4.1] 

 

The ANTS model assumes that individual ants forage according to Equation 4.1 with Tt 

and Ts  defined as functions of F.  

Tt is determined by the way ants fill the space of their foraging territory. If the 

foragers were distributed in their respective colony territories with equal density in all 

colony sizes, the size of a foraging area would be a linear function of forager population 

size (F). Then both the maximum and average distances that a forager must travel to 

acquire resources would increase with the square root of colony size. Assuming 

equivalent travel speeds across colonies, then Tt ~ F 1/2.  Since Tt represents the per ant 

travel time, the total time all ants in a colony spend traveling is proportional to Tt F which 

is proportional to F 3/2. Thus, increasing colony size results in individual ants spending 

more time traveling, or, viewed from the perspective of the colony, the total amount of 

travel time increases faster than colony size increases. 
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The ANTS model posits that larger colonies can reduce Tt if they utilize a higher 

density of foragers (ρf) in their territories. Higher ρf  reduces the size of the territory area 

(A) and thereby reduces travel distances and Tt. 

However, increasing ρf also bears a foraging time cost. In the model, Ts is 

inversely related to seed density (ρs) because when there are fewer seeds, it takes foragers 

longer to find them. As ρf increases, seeds are depleted faster, and as ρs decreases, Ts 

increases.  Larger colonies then face a tradeoff between larger territories (with relatively 

long Tt and short Ts) or higher density of foragers in smaller territories (with relatively 

shorter Tt and longer Ts). The ANTS model calculates the optimal forager density (ρf*) 

that minimizes Tf and describes how ρf* changes as a function of colony size.  

 

4.4 SUMMARY OF THE ANTS MODEL PREDICTIONS 

 

The quantitative predictions of the ANTS model include travel distance, travel times, 

search times, forager density and total foraging trip times (Table 4.2). The derivation of 

these predictions appears in the Appendix in Section 4.9. In summary, the ANTS model 

predicts that larger colonies will have larger territories and will have a higher density of 

foragers in the territory. The foragers in large colonies will travel further to search for 

food and will have longer travel times. As long as seed density and the speed and search 

efficiency of individual foragers are constant, the model predicts that foragers in large 

colonies will also have longer search times, and therefore the total length of foraging trips 

will be longer.                                                     
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4.5 METHODS 

 

The ANTS model variables and the methods by which each variable was measured in the field 

are listed in Table 4.1. In the summer of 2003, preliminary observations were made on 8 

colonies of P. desertorum, P. maricopa, and P. rugosus on the Sevilleta Long Term Ecological 

Research Site in New Mexico and in Portal, Arizona. In 2004, the study employed a nested 

design of 4 colonies each of P. desertorum, P. maricopa and P. rugosus, all on the Sevilleta. 

Thus, a total of 20 colonies were observed over the 2 years. 154 completed foraging trips were 

observed and there were sufficient data to estimate the model variables for 16 colonies.  

Each of the three species has a different characteristic number of workers and foragers 

(Table 4.1). Although the number of foragers active during any foraging period is somewhat 

plastic, the asymptotic colony size differs consistently among species (Johnson 2000). The 

three focal species are sufficiently different in colony size that daily fluctuations in foraging 

activity should not mask general trends in forager number.  

The following observations were made for each colony under natural field conditions. 

Individual foragers were followed as they left the nest, traveled to a search location, searched 

for and acquired a seed, and returned to the nest. Some foragers were marked with DecoColor 

opaque paint markers ® Uchida of America. Others were left unmarked and were followed 

with careful observation. For each forager, Tf, Ts, Tt, dt, and vt were measured by methods in 

Table 4.1. The entrance(s) to each colony were monitored to estimate F for each colony. 

Temperature at 2 cm above ground was recorded with a thermocouple.  

Additional observations and experimental manipulations were made for the 12 colonies 

observed in 2004. To test the effect of seed density on search times, six 1 m2 quadrats were 
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established in each colony territory for seed addition experiments. Three quadrats were placed 

randomly at each of 2 distances from the nest entrance (at 3 m and 6 m from P. desertorum 

nest entrances, and at 6 m and 12 m from P. maricopa and P. rugosus nest entrances; Figure 

4.1). The quadrats were observed for 300 s intervals. In each interval we recorded: number of 

seeds removed, time spent searching for each found seed, and whether each forager was 

searching or traveling. We also recorded the number of searchers and travelers at the start and 

end of each interval. For each colony, observations of the quadrats were made on two days 

under control conditions. On two additional days, 150 millet seeds were added to two of the 1 

m2 plots and the same measurements were made. 

 

4.6 RESULTS 

 

4.6.1 Allometric Scaling Patterns 

 

Travel distance (dt), travel time (Tt), search time (Ts), foraging time (Tf), forager density 

(ρf), territory area (A) and the number of foragers (F) were measured for each colony 

(Table 4.1). The ANTS model predicts that dt, Tt, ρf,  A, Ts and Tf  all increase non-linearly 

with F. In the colonies observed, dt, Tt, ρf,  and A, increase significantly with F, but Ts and 

Tf  do not (Figure 4.2). 

Some variables are significantly different among species. dt and Tt in  

P. desertorum differed significantly from P. maricopa and P. rugosus (Table 4.2). F, ρf 

and A in P. rugosus differed significantly from P. desertorum and P. maricopa. Ts and Tf 

did not differ significantly between species.  None of the parameters varied significantly 
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between years without controlling for species effects, but there was a significant 

difference between years in P. desertorum for Ts  (F = 8.40, n = 48, p = 0.0057) and Tf   

(F = 11.45, n = 48, p = 0.0015). 

 

4.6.2 Travel Distance and Travel Time 

 

Equations 4.2 and 4.3 predict that dt and Tt increase with colony size and decrease with 

forager density. vt averaged 0.036 m/s and was indistinguishable across species (F = 2.89, 

n = 114, p = 0.06) although P. rugosus were slightly faster than the other species. The 

observed dt and Tt are indistinguishable from the model predictions for each species 

(Figure 4.3). 

The travel time prediction is based on the assumption that the density of searching 

foragers does not vary with distance from the nest. This was tested by measuring the 

density of actively searching foragers at grids placed at 2 distances from the nest 

entrance. Figure 4.4 shows that the density at the two distances was indistinguishable in 

all 3 species.  

 

4.6.3 Search Time 

 

The ANTS model predicts that Ts decreases as ρs  increases (Equation 4.4). Field 

observations provide qualitative support for this prediction. Ts was shortest in quadrats 

that were supplemented with seeds (Figure 4.5a).  
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Since the density of foragers (ρf ) is expected to decrease the density of seeds (ρs), 

Ts is expected to increase as ρf  increases. Quantitative comparisons between observed 

search times and model predictions require knowing the efficiency of seed detection (Es), 

the diffusion rate of searching foragers (Ds), and the density of seeds (ρs). Reliable 

measurements of Es, Ds, and ρs were not obtained. If they are assumed to be equivalent 

across species, the model predicts that Ts is an increasing function of ρf . However, there 

was no significant relationship between Ts and ρf  in the observations (Figure 4.5b). 

Additionally, there was no increase in Ts with time of day (F = 0.084, n = 119, p = 0.77), 

implying that forager depletion of seeds did not increase the search times of subsequent 

foragers. 

 

4.6.4 Optimal Forager Density 

 

We expect forager density in the field to approximate ρf * since colonies with this density 

of foragers should minimize Tf. ρf * is predicted to increase as a function of F and 

decrease as a function of Ts (Equation 4.8). ρf * increased significantly as a function of F 

(Figure 4.2c), but showed no significant relationship to Ts (Figure 4.5b). A quantitative 

comparison between the model prediction and the observations is not possible because Es 

and Ds were not measured in the field.  
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4.6.5 Foraging Times 

 

The model predicts that if search efficiency and seed density are equal across colonies, 

both Tt and Ts will be longer in larger colonies, thus Tf  will also be longer in larger 

colonies. However, Tf  was indistinguishable across species (Table 4.3).  

Tf  was also indistinguishable between years without considering an interaction 

with species effect; however, mean Tf  for P. desertorum is almost twice as long in 2003 

than in 2004 (Figure 4.6) and the difference was significant (F = 11.45, n = 48, p = 

0.0015). 

  

4.6.6 Recruitment and Invasion 

 

Each species showed a different pattern of recruitment to dense seed patches (Figure 

4.7a). P. desertorum doubled the searchers per quadrat per observation period when seeds 

were added; however, the increase may not have been caused by recruitment. P. 

desertorum never exploited seeds added to the far quadrats, and in the closer quadrats 

(3m from the nest), the increase in searcher density appeared to be created by the same 

individuals rapidly returning to the foraging site, so that the same forager was often 

counted twice within the 300 s period. Thus, the apparent increase in searcher density 

was largely due to the close proximity of the quadrat to the nest.  

P. maricopa appeared not to recruit additional workers to the near quadrat, and 

like P. desertorum, never exploited seeds in the far quadrat.  P. rugosus was the only 
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species that appeared to recruit workers to both near and far sites. On average, P. rugosus 

tripled the number of searching foragers in seed addition plots.  

P. maricopa and P. rugosus each retrieved seeds from seed addition plots located 

in the foraging areas of smaller species. P. desertorum did not exploit seeds in any other 

species’ territories (Figure 4.7b).  

 

4.7 DISCUSSION 

 

Pogonomyrmex colonies adjust their foraging behavior based on forager population size 

(Table 4.1, Figure 4.2). Without invoking the specific geometry of foraging networks, the 

allometric approach suggests that there is a non-linear relationship between the distance 

to seeds and the size of the network of foraging ants. In quantitative agreement with the 

ANTS model predictions, large colonies send their foragers further distances to collect 

seeds and therefore foraging travel times are longer (Figures 4.2a, 4.2b and 4.3). The 

model also predicts that large colonies distribute their foragers in the territory with higher 

density than do smaller colonies, and this was also observed (Figure 4.2c).  

 The ANTS model predicts that foragers in larger colonies have longer search 

times, but there was no significant increase in search time with colony size (Figures 4.2e 

and 4.5a). Colonies with higher forager density may not have had increased search times 

(Figure 4.5b) because those colonies were able to recruit workers to patches with high 

seed density (Figure 4.7). As a result, total forager trip times were invariant with respect 

to forager number (Figures 4.2f and 4.6). Since the rate at which a forager returns seeds 

to the nest is the inverse of foraging trip time, seed intake rate per forager is invariant 
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with respect to the number of foragers in the colony. Thus, in the species studied here, 

colony metabolic intake scales isometrically with colony size. 

In eusocial colonies, the foraging activity of one forager can affect the foraging 

success of another. Regardless of whether colonies use individual foraging strategies (as 

in P. desertorum) or group foraging strategies and trunk trails (as in P. rugosus), foragers 

travel from a central location to gather food in the same territory. Food acquired by one 

forager becomes unavailable to the other foragers. In larger colonies with larger 

territories, some foragers have to go greater distances to acquire seeds to avoid 

competition for limited seeds close to the nest.  

Central place foraging theory predicts that individual foragers that travel further 

will be more selective in choosing seeds, but this has not been observed in field studies 

(Bailey & Polis 1987, Fewell 1988, Morehead & Feener 1998). It is possible that this 

deviation from theory occurs because some foragers must travel greater distances not to 

forage optimally as individuals, but to forage optimally for the colony.  

Species of ecologically similar Pogonomyrmex seed harvesters often coexist when 

the species have very different colony sizes (Johnson 2000). Body size can mediate 

resource partitioning in ants (Davidson 1977, Chew & DeVita 1980). This study suggests 

that colony size may also affect resource partitioning. Even though there is significant 

dietary overlap in the species of seeds these ants consume (Davidson 1977, Johnson 

2000), these ants may divide niche space in a way that enables coexistence because each 

species forages in a way that is optimal for its colony size. Species with smaller colonies 

appear to forage for sparsely distributed seeds, while the larger colonies exploit dense 

seed patches (Figure 4.7). 
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Large colonies obviously consume more resources than small colonies. 

Additionally, field observations suggest that larger colonies collect more resources per 

unit area. Large colonies have more foragers per unit area, with each forager removing 

resources at approximately the same rate (Figure 4.2c and 4.2f). The rate at which seeds 

are consumed per unit area may affect the interactions that ants have with plants and 

other granivores. 

Field observations showed no relationship between search time and forager 

density. The ANTS model predicts that search times increase with forager density, but 

only if seed density does not vary as a function of colony size. Observations would be 

reconciled with model predictions if large colonies foraged in areas with higher seed 

densities. Larger colonies may be located in regions with higher seed density, or they 

may exploit dense seed patches at a smaller scale. 

The species on the Sevilleta are interspersed, but not all species occur in all plots. 

One region of the Sevilleta contains only P. rugosus, while other regions contain all three 

species. This might suggest that P. rugosus dominates areas with higher seed density, 

thus lowering search times. However, there is not a significant relationship between 

colony location and search time within P. rugosus (F = 0.835, n = 40, p = 0.457). 

 Alternatively, larger colonies may be better able to recruit to dense seed patches, 

to invade the core foraging areas of smaller colonies, and perhaps to defend their own 

core areas from incursions from smaller colonies (Figure 4.7). Thus, although large 

colonies may be intermingled with smaller colonies in the landscape, they may be able to 

concentrate their foragers in patches with higher seed density. By increasing forager 
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density and recruitment to high quality patches, large colonies maintain per ant foraging 

times (and therefore per ant food intake rates) equivalent to small colonies.   

The ANTS model postulates that colonies should be selected to minimize 

foraging times, but there are many factors other than colony size that affect foraging 

behavior and energy intake rates, and many of those factors may be correlated with 

colony size. For example larger colonies tend to utilize recruitment, chemical 

communication networks and trunk trails more frequently (Holldobler 1976, Beckers et 

al. 1989, Anderson & McShea 2001). Additionally, colonies may differ in length of daily 

or seasonal foraging period, efficiency of energy extraction from seeds, or ability to 

select higher quality seeds. Integrating forager population size with other components of 

optimal foraging theory may provide a better understanding of how ants, and perhaps 

other social organisms, optimize energy acquisition.  

 The largest P. rugosus colony (2300 foragers) had 30 times more foragers and a 

territory 10 times larger than the smallest P. desertorum colony (65 foragers). However, 

with a 4-fold increase in forager density, P. rugosus colonies only had to send their 

foragers twice as far as P. desertorum colonies. This small increase in travel distance and 

time was compensated for with small decreases in search time. 

Thus, across a large difference in forager number, all colonies had similar mean 

foraging trip times within each year of the study. Since foraging trip time was invariant 

with respect to colony size, metabolic intake rates scale isometrically with forager 

population size. This is in contrast to metabolism that scales allometrically with body size 

in individual organisms. 



 

72 

The ANTS model makes explicit the foraging costs and benefits associated with 

increased colony size. Colonies pay a foraging cost in that individuals must travel further 

to acquire resources, but there is also a foraging benefit. Large colonies appear to use 

their foraging network to gain information about the location of rich resource patches and 

they exploit that information to allow a higher density of foragers in the landscape 

without increasing search times. The tradeoff between a geometric cost and a benefit of 

exploiting information may have implications for other social organisms. 
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4.9 APPENDIX: DERIVATION OF THE ANTS MODEL 

 

4.9.1 Derivation of Travel Time 

 

Travel time (Tt) is the distance traveled to a seed (dt), divided by the travel velocity (vt), 

and multiplied by 2 to account for the return to the nest: Tt = 2dtvt
-1. vt is assumed to be 

constant with respect to F, but dt  depends on the size of the colony territory and the way 

in which foragers are distributed in that territory. Tt is computed as the average travel 

time of all foragers in a colony.  

Several assumptions are made to simplify the problem. The territory area (A) of 

each colony is assumed to be circular, and interactions from neighboring colonies are not 

considered. We define density of foragers (ρf) as the average number of foragers actively 

searching in each m2 of territory area. (Note that there will be other foragers traveling in 

the territory, but ρf refers only to foragers who are searching). The foraging area of a 

colony is determined by the number of foragers and the density with which those foragers 

search the territory: A = F/ρf. 

The maximum distance any forager can travel (dtmax) is the radius of the colony 

territory area, so that dtmax = (A/π )1/2 = F1/2 (ρf π )-1/2. Many foragers will have searched 

locations closer to the nest, thus they will have traveled less than dtmax. dt  is the mean 

distance traveled by all foragers and equal to the total distance traveled by all of the 

foragers (dt-total) divided by F.  

dt-total is found by integrating across all distances from the nest within A. The model 

assumes that the density of searchers shows no consistent variation with the distance 
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from the colony entrance. Under these assumptions, the average distance traveled by a 

forager can be found by calculating the number of foragers at each distance from the nest. 

The area of a small ring of width δdr at distance dr from the center is:  

Ar = π(dr + ½ δdr)2  - π(dr - ½δdr)2  = 2πdr δdr.  

The number of foragers in area Ar is Fr = ρf Ar = 2π ρf  dr δdr. Each of those  

foragers has traveled distance dr, so dt-total is the integration of Fr dr from 0 to dtmax : 
  dtmax 

dt-total = ∫
0
  (2π ρf  dr

2 δdr).   Solving the integral gives                          
dtmax 

dt-total = 2/3π ρf  dr
3 |

0
    and substituting dtmax = F 

1/2 (ρf π )-1/2 gives 

  
dt-total = 2/3π-1/2 F 3/2ρf

 -1/2.  

The mean distance traveled by each forager is: dt = dt-total/F. Calculating that  

2/3π-1/2 ≈ 0.38: 

 

dt = 0.38F 1/2ρf
 -1/2        [4.2] 

 

Substituting this value of dt into Tt = 2dtvt
-1: 

 

Tt = 0.76vt 
–1 F 1/2 ρf 

-1/2                                                                                   [4.3] 

 

4.9.2 Derivation of Search Time 

 

The derivation of search time is based on the encounter rate of seeds (Stephens & Krebs 

1986). Ts can be defined as a function of seed density (ρs), density of searchers (ρf), and the 

rate at which foragers search the territory (defined by a diffusion parameter, Ds). Search 
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efficiency (Es) is the probability that a forager will find and pick up an existing seed within 

an area that has been searched.   

Before deriving the final equation for Ts, we consider two simpler cases. First, we 

consider the simplest case in which foragers do not interfere with each other. If ρs is 

defined in units of seeds/m2, then Esρs is the number of seeds a forager picks up in each 

m2. Then, the average number of m2 in which the forager must search in order to find one 

seed is (Esρs)-1
. If the forager diffuses through the territory at rate Ds (with units m2/s), 

then the time it takes to reach a new m2 in which to search is Ds
 -1. Thus, average search 

time is inversely proportional to search velocity, seed density, and search efficiency:  

 

Ts = (EsDsρs)-1          [4.4] 

 

Equation 4.4 describes foraging times if there is no interference between foragers 

as they search for seeds. However, when a forager collects a seed, that seed is removed 

from the pool of seeds which can be collected by the other foragers. Ts then depends on 

the spatial and temporal scale at which foragers overlap.  

Now we consider a second case in which foragers overlap in space during the 

search time. We assume that the foragers overlap spatially on the scale at which ρf and ρs 

are measured (1 m-2), so that increasing ρf
  by 1 decreases ρs by 1 in each m2 during that 

search time. Then ρs (in a given m2) is diminished only by the number of foragers 

searching in that m2 (ρf) during that search time. For the first forager to find a seed,  

Ts1 = (EsDsρs)-1. For the second forager, Ts2 = [EsDs (ρs-1)]-1; for the third forager,  
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Ts3 = [ EsDs (ρs-2)]-1; and search time increases in this way for all ρf  foragers . The mean 

Ts across all of the foragers is the integral of the search time of each forager (Tsx) divided 

by the total number of foragers (ρf ):       

Ts =             1        =            ρf                so  
                        x = ρf 

         EsDsρf
-1

 ∫
0
 ρs – x dx    EsDs (ρfρs – ½ρf

2 ) 
 
 
 
Ts = EsDs (ρs - ½ρf )-1       [4.5] 
 

 
          
Finally, the model considers the way in which foragers overlap through time. To 

simplify the consideration of temporal overlap, the model assumes that ρs is not altered 

by external factors (no seeds are added or removed, except by the ants) during the daily 

foraging period of the colony. In order to calculate the number of seeds removed by all 

foragers over a specified time period, we need to know the rate at which new foragers 

arrive in that m2 (R). Assuming a steady state distribution of foragers, then newly arriving 

foragers are all returning foragers who have already retrieved a seed, returned to the nest 

and then returned to the search area. Pogonomyrmex foragers spend little or no time in 

the nest before beginning another trip (M. Moses pers. obs.), so the rate of return trips is 

1/Tf. Thus, R = (Tw/Tf ) where Tw represents the foraging period under consideration (in 

the Pogonomyrmex studied here, a foraging bout lasts about 3 hours, so  Tw = 10800 s). 

Thus, the total number of foragers per m2 per foraging period equals Rρf.  

The final expression for search time, averaged over all foragers in a single day 

and considering the spatial and temporal overlap of foragers, is found by substituting Rρf 

for ρf  in Equation 4.5: 
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Ts = EsDs (ρs - ½Rρf )-1       [4.6] 

 

Thus, Equation 4.4 describes the search time of an individual ant searching in an 

area with known ρs. Equation 4.5 describes mean search time (Ts) when ρs is known at a 

given moment in time. Equation 4.6 describes search times when ρs is known at the 

beginning of a foraging period, and foragers deplete ρs over time.   

According to Equation 4.6, Ts increases as the difference between ρs and Rρf  

decreases. Simulations of Equation 4.6 are shown in Figure 4.8. In Figure 4.8a, the 360th 

forager to reach a patch spends nearly 10 times longer searching than the first forager to 

reach that patch. However, mean search time (Ts) only doubles as Rρf  approaches ρs. Note 

that Rρf is constrained to be less than ρs to avoid infinite search times.  

 

4.9.3 Optimizing Search Strategy  

 

The final equation for foraging time, averaged over each forager in a colony, is obtained by 

substituting Equations 4.3 and 4.6 into Equation 4.1. 

 

Tf = 0.76vt
-1F 1/2ρf 

-1/2  + [EsDs
 (ρs –½Rρf)]-1     [4.7]  

 

The ANTS model predicts that travel time (Tt) decreases in proportion to ρf 
-1/2, but 

search time (Ts) increases as a function of ρf. This tradeoff leads to an optimal density of 

foragers (ρf*) that minimizes total foraging time. The model predicts that colonies should 
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be selected to find ρf* because ρf is the only variable under immediate control of the 

colonies: ρs  is set by the environment, F is constrained evolutionarily for each species, and 

Es,
 Ds, and vt are constrained by the physiology of the ants.   However, ρf  can be adjusted 

continually to minimize Tf  based on changing seed densities.  

By setting the derivative of Tf with respect to ρf equal to 0, we find ρf* which 

minimizes Tf :  -0.38vt
-1F1/2ρf *-3/2 + ½ REs

-1Ds
-1 (ρs– ½Rρf

* )-2 = 0. Simplifying and solving 

for ρf * gives  ρf * = 0.762/3vt
-2/3F1/3Es

2/3Ds
2/3R-2/3(ρs –½Rρf )4/3 which can be simplified to:  

 

ρf
* = 0.83F 1/3 Ts

-4/3 (vt R Es Ds)-2/3      [4.8] 
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Table 4.1  ANTS variables, operational definitions and observed valuesa 
 

Variable Definition Measurement Methods Mean ±SE 
Total 
population 

Number of adult 
workers in a colony 

Colony population was not measured in this study. 
Values are estimates from (1) Johnson 2000, (2) 
MacKay 2002, (3) Gordon 1984 and  
(4) Holldobler & Wilson 1990.  
 

4001,2 
500-20001,3 
100001,3,4 

Tf Time of a foraging 
trip 

Follow individual foragers from the time they 
leave the nest to the time they return with a seed. 
Tf = Tt + Ts. 

712 ± 99 s 
987 ± 131 s 
846 ± 117 s 
 

F Number of foragers 
per colony 

Measure the rate at which foragers leave (rl) and 
enter (re) the nest by counting foragers for 3 
minutes at 30 min. intervals. At equilibrium,  
rl = re and F = rlTf 

110 ± 107 
238 ± 142 
1499 ± 127 

dt Distance from nest to 
seed 

Measure the linear distance between the seed 
and the nest.  

4.8 ± 0.37 m 
5.2 ± 0.49 m 
8.2 ± 0.44 m 

Tt Roundtrip travel time 
from nest to search 
location 

Follow foragers and record a) the time it takes to 
reach the search location and b) the time it takes 
from attaining a seed to returning to nest. The 
sum of these times is Tt. 

275 ± 37 s 
458 ± 49 s 
456 ± 44 s 

vt Travel velocity vt = dt/Tt 0.037 ± 0.0032 m/s 
0.029 ± 0.0039 m/s 
0.042 ± 0.0038 m/s 
 

Ts Time spent searching 
for a seed 

Measure the time interval between the start of 
search behavior to obtaining a seed.  

436 ± 77 s 
466 ± 102 s 
356 ± 91 s 
 

A Territory area Calculated as the area enclosed by a circle 
whose radius is twice the median seed distance 

76.5± 28 m2 
72.1± 37 m2 
262.3± 33 m2 

 
ρf Density of searching 

foragers in the 
territory of the 
colony 

Averaged at the scale of the colony: ρf = F/A  
 
 
 
Averaged over 1m2 quadrats within a territory: 
count the number of foragers searching within a 
1m2 quadrat in one instant (2004 only) 

0.43 ± 0.068 ants/m2 
0.84 ± 0.18 ants/m2 
1.58 ± 0.29 ants/m2 
 
0.22±0.088 
0.29±0.15 
3.1±0.75 
 

R Number of foraging 
trips per ant per day 

Time spent foraging per day divided by Tf 16± 1.8 
11± 1.2 
12± 1.5 
 

ρs Seed density N/A Unknown 
Es Search efficiency N/A Unknown 
Ds Search diffusion rate N/A Unknown 

 
 
aVariables from the ANTS model with definitions, methods used to estimate each variable, and values 
observed for P. desertorum, P. maricopa and P. rugosus. All variables represent the mean for a species, 
averaged across multiple foragers and colonies of each species at the Sevilleta LTER and Portal, AZ. 
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Table 4.2  ANTS model predictions and observations 
 

 
Description Equation from Appendix 4.9 Observations 

Prediction 1: Average 
distance of retrieved seeds 
(dt) increases with the 
number of foragers (F) and 
decreases with the density of 
foragers (ρf

 ). 
    

dt = 0.38F 
1/2ρf

-1/2 
                                           

                            [4.2] Quantitatively consistent 
with prediction  
(Figure 4.3a) 

Prediction 2: Average travel 
time (Tt ) increases with F 
and decreases with ρf

 .   
 

Tt = 0.76 F 1/2ρf
-1/2vt

-1                                        [4.3] Quantitatively consistent 
with prediction  
(Figure 4.3b) 

Prediction 3: The average 
search time of foragers (Ts) is 
inversely proportional to 
search efficiency (Es), search 
diffusion rate (Ds) and seed 
density (ρs).  
 

Ts = (EsDs ρs) –1                                                 [4.4] Qualitatively consistent 
with the prediction that Ts 
decreases with ρs  
(Figure 4.5a) 
 
Es and Ds 

 were not 
measured. 
 

Prediction 4: If Es and Ds 
 are 

constant, and ρs is not altered 
by external factors, then Ts 
increases throughout the 
foraging period as each 
forager removes a seed at rate 
R. Ts also increases ρf 
increases. 
  

Ts = [Es Ds
 (ρs – ½ Rρf )] -1                                 [4.6] Not consistent with 

prediction that Ts 
increases throughout 
foraging period  
(Section 4.6.3) 
 
Not consistent with 
prediction that Ts 
increases with ρf   
(Figure 4.5b) 
  

Prediction 5: Optimal forager 
density (ρf

* ) is the density of 
foragers that minimizes Tf. ρf

* 

increases with F.  
 

ρf
* = 0.83F 1/3 Ts

- 4/3 (vt R Es Ds)- 2/3                              [4.8] Qualitatively consistent 
with prediction that ρf

* 
increases with F 
(Figure 4.2c) 
 

Prediction 6:  Tf is found by 
substituting Equations 4.3 
and 4.6 into Equation 4.1. If 
Es, Ds

 , ρs, and vt are equal 
across colony sizes, then Tf 
increases with F. 

Tf =0.76F 1/2ρf
- 1/2vt

-1 + [Es Ds
 (ρs -½ R ρf )] –1     [4.7]          Not consistent with 

prediction that Tf 
increases with F 
(Figure 4.2f) 
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Table 4.3  Comparison of ANTS variables between species and years a 

  
             Between 
  

Species  
 

 
 
 
 
 

Between 
 

Years             
 

Variable      F statistic      p value 
   Significant 
   Differences F statistic      p value 

 
 
dt 19.51 0.00012 

   P. desertorum < P. maricopa  
   P. desertorum < P. rugosus 0.331 0.574 

 
 
Tt 6.84 0.0094 

   P. desertorum < P. maricopa  
   P. desertorum < P. rugosus 0.128 0.726 

 
Ts 0.366 0.70    n.s. 1.89 0.19 
 
Tf 1.44 0.27    n.s. 2.87 0.112 

F 38.77     < 0.0001 

   
   P. desertorum < P. rugosus 
   P. maricopa < P. rugosus 0.55 0.471 

 
ρf 11.36 0.0014    P. desertorum < P. rugosus 0.757 0.399 

A 11.03 0.0016 

    
   P. desertorum  < P. maricopa 
   P. desertorum < P. rugosus 
   P. maricopa < P. rugosus 0.253 0.622 

 

 
a Significant differences were determined using Tukey’s method. The between species 
analysis includes both years. Removing the effect of year does not change which species 
are significantly different. The between years analysis includes all three species. The 
species-year interaction is only significant for Ts and Tf  in P. desertorum.
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Figure 4.1  Method for measuring ANTS parameters in each colony. Foragers were 
followed as they left the nest entrance (black disk in the center). The outbound travel 
distance was measured as the length of the forager’s relatively straight path from the nest 
entrance (solid line). The forager was followed as it searched (dashed line) until reaching 
a seed (asterisk). The seed distance was the linear distance from the seed to the nest 
entrance. 6 quadrats (shaded squares) were established in each colony in 2004. The 
quadrats were placed at two distances from the nest entrance and foraging activity was 
monitored inside the quadrats in 300 s intervals. 

 

*
 
*  
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Figure 4.2  Observed colony properties as a function of forager population size.  
Each data point represents a colony. All axes are log transformed. a) Seed distance  
(p <0.001, r2 = 0.74); b) travel time  (p <0.011, r2 = 0.38); c) forager density  (p <0.001, 
r2 = 0.64); d) area  (p <0.001, r2 = 0.72); e) search time (n.s., p = 0.726); f) foraging trip 
time  (n.s., p = 0.185).   
 

 

a 
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Figure 4.3  Predicted and observed travel times and distances. a) Travel distance 
predicted by ANTS Equation 4.2a and observed distance +SE. Travel distance 
predictions are indistinguishable from observations (t = 0.445, p = 0.658 for P. 
desertorum; t = 0.0572, p = 0.955 for P. maricopa; t = -0.421, p = 0.676 for P. rugosus).  
b) Travel time predicted by ANTS Equation 4.2b and observed travel time +SE. Travel 
time predictions are also indistinguishable from observations (t = 0.704, p = 0.485 for P. 
desertorum; t = -1.612, p = 0.117 for P. maricopa; t = 1.257, p = 0.216 for P. rugosus).

a 

b 
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Figure 4.4  Mean number of foragers observed searching for seeds per quadrat under 
control conditions in 5 minute intervals + SE.  The plots were located at the indicated 
distances from the nest entrances of each colony. The data shown is the mean for each 
colony of a given species.  
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Figure 4.5  Search times in 2003 and 2004 a) Mean search time (+ SE) in 2003 and 2004 
and in seed addition quadrats in 2004. b) Search time and forager density. Each point is a 
mean value for a colony. There is no significant relationship between Ts and ρf   
(p = 0.485). 
 

 

a 

b 
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Figure 4.6  Mean (+SE) time of a foraging trip for each species in 2003 and 2004.
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Figure 4.7  Number of searchers and seeds found in experimental quadrats. a) The mean 
(+SE) number of foragers searching in 1 m2 quadrats in 300 s. Measurements were taken 
under natural conditions and during 2004 seed addition treatments for each species. b) 
Mean (+SE) number of seeds found in 300 s for each species in control quadrats, seed 
addition quadrats and quadrats of invaded territories. 
  

a 

b 



 

91 

 

Figure 4.8  Predicted responses of search time to forager density and seed density. 
a) Search time of each individual forager as forager density is increased. b) Mean search 
time per forager (Ts), averaged over all foragers, as the density of foragers (ρf ) approaches 
the density of seeds (ρs). F = 2000 and ρs = 400 in the simulations. 
 

a b 
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5 CONCLUSIONS: COMMON GEOMETRIC FOUNDATIONS OF METABOLIC 

SCALING IN INDIVIDUALS AND SOCIETIES 

 

Just as individual organisms construct arteries and veins to distribute energy to cells 

throughout their bodies, societies construct distribution systems to transport energy and 

materials to individuals. In modern human societies, these distribution networks take the 

form of highways and airline routes, oil pipelines and electric grids, and numerous other 

physical and virtual systems that enable modern society to function. In ant colonies, 

social infrastructure includes foraging trails, pheromonal communication systems, and 

nest structure. 

The hierarchical branching geometry of metabolic networks has been used to 

explain common scaling behaviors across levels of biological organization (West et al. 

1999, Brown et al. 2004). Allometric scaling underlies the scaling of birth rate in 

individual mammals that is discussed in Chapter 3. It also appears to underlie metabolic 

processes in social organization that are discussed in Chapters 2 and 4, although there are 

important differences between metabolic networks in organisms and societies.  

 

5.1 SCALING OF NETWORK SIZE IN INDIVIDUALS AND COLONIES 

 

The 1/4 power scaling that is so pervasive in biological systems may have a more general 

cause than the specific geometry of fractal branching networks (Brown et al. in prep). In 

Chapter 4, I show that the distance each forager travels to acquire energy is dependent 

upon the size of its colony. I assume that the density of searching foragers (ρf ) is constant 
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within a territory, that is, each forager searches an area of the same size, and all areas of 

the territory are searched. In section 4.9, I calculate the mean distance traveled by each 

forager (dt ) and the total distance traveled by all foragers (dt-total) to search all areas of the 

territory. I assume that each forager takes the most direct path from the nest to the area it  

searches. dt-total is found by integrating the distances (d) that all foragers travel from  
            dtmax 

the colony center to all search locations in the territory area: dt-total ~ ∫
0
 ρf

 d2 δd. dtmax is 

the maximum distance any forager travels and is proportional to F1/2
ρf

 –1/2, where F is the 

number of foragers. dt ~ F1/2ρf
 –1/2 and dt-total ~ F 3/2ρf

 –1/2. The length of the network can 

be pictured as filling a series of concentric hollow cylinders where the height of each 

cylinder is equal to the distance from the center. 

If the ants foraged in primarily three-dimensional space (as might be the case for  
 
ants that forage in a volume of leaf litter), the network integrates the distances traveled by  
                    dtmax

 

foragers searching the volume of the territory: dt-total ~ ∫
0
  ρf

  d3 δd  where dtmax ~ F 1/3ρf
 –1/3.  

 
Solving this integral, dt-total ~ F4/3ρf 

–1/3. More generally, for a given density of foragers, 

the size of the network increases faster than the number of foragers of which it is 

composed: dt-total ~ F 
(n+1)/nρf 

–1/n where n is the dimension of the space searched by the 

foragers.  

 The same method may be used to describe the minimum size of a metabolic 

network in an organism. Instead of foragers leaving a central location to gather resources 

dispersed in the surrounding territory, imagine an individual with a central heart that must 

distribute blood to cells that fill the surrounding organism. Instead of each ant searching 

an invariant amount of space, imagine that each cell receives an invariant amount of 
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resource. In other words, imagine that the network is supplying resources at a rate 

proportional to the size of the organism.  

In such a hypothetical organism, the distances traveled to fill the space of the 

organism are the same as in the distances traveled by a colony of ants foraging in three 

dimensions: dt-total ~ C 4/3ρc
–1/3 where C is the number of cells to which resources travel 

and ρc is the density of cells (Brown et al. in prep). Since the density and mass of cells in 

organisms do not vary with respect to organism mass, then C ~ M and dt-total ~ M 4/3 

where M is the mass of the organism. The hypothetical network delivers resources at rate 

B, such that B ~ M. Given dt-total ~ M 4/3
 and B ~ M, then B ~ (dt-total)3/4. The metabolic 

output of the network is proportional to the network size raised to the 3/4 power. 

In organisms, the size of the network does not grow faster than the organism 

itself. If that were the case, the network would take up an increasing percentage of the 

volume of larger organisms. Instead, the size of the network is directly proportional to 

body mass: dt-total ~ M 1. For example, the volume of blood in mammals is proportional to 

body mass (Calder 1984, West et al. 1997). Since the output of a network is proportional 

to (dt-total)3/4, the output of a network of size dt-total ~ M 1 is proportional to M 3/4. Thus, in 

organisms, network size scales linearly with body mass, and metabolic rate scales with an 

exponent of 3/4. As a result, cellular metabolic rate scales as M -1/4. As organisms and 

their metabolic demands increase, the cells that constitute the organism must slow down. 
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5.2 SCALING DIFFERENCES BETWEEN COLONIES AND INDIVIDUALS 

  

Ant colonies have taken a different approach to accommodating the allometric scaling of 

network size. First, there is no physiological constraint that prevents the size of the 

foraging network from growing faster than the number of foragers who are searching. It 

is possible for an increasing percentage of F to be taken up by travelers. A large organism 

is not composed primarily of blood, but foragers in a large colony can spend most of their 

foraging time traveling rather than searching. This was observed in the Pogonomyrmex: 

foragers in large colonies had the longest travel times (Figure 4.3) and the shortest search 

times (Figure 4.5a).  

Second, the density of ants varies with colony size.  The largest Pogonomyrmex 

colonies had the highest density of foragers (Figure 4.2c). Since dt-total ~ F3/2ρf 
–1/2, 

increasing density decreases network size. If density were constant, the ANTS model 

would predict dt ~ F 1/2. However, in Pogonomyrmex, ρf ~ F 1/2 (Figure 4.2c), and as a 

result, dt ~ F 1/4 (Figure 4.2.a). Thus, large colonies reduce travel distances and times by 

increasing forager density. 

Increasing density in large colonies is analogous to diminishing cellular metabolic 

rate in a larger organism. Each ant has access to a smaller share of territory area, and if 

resource densities are constant, a smaller share of resources. Thus, in large colonies, the 

terminal branches of the network and the foragers are spaced more closely together, while 

in larger organisms, the cells are spaced at the same density regardless of body size, but 

the terminal branches of the metabolic network are spaced further apart. Both the amount 
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of resource to which the ant has access and the amount of resource delivered to the cells 

are lower in larger systems. 

Foragers in a colony are different from cells in an organism because foragers have 

to spend time searching for their resources. In Pogonomyrmex the seed intake rate of the 

colony (Bcol) is proportional to the number of foragers (F) divided by the average time of 

a foraging trip (Tf ). If Tf  were only composed of travel time (Tt), then we would expect 

Bcol ~ F/Tt. Since Tt ~ F 1/4, then Bcol ~ F 
3/4, analogous to B ~ M 3/4 in organisms, even 

though the ants forage in two dimensions. However, allometric scaling of metabolic 

intake with colony size was not observed in Pogonomyrmex because foraging time is 

composed of search time in addition to travel time. 

The need to search for food raises a third important way that foragers 

accommodate allometric scaling of network size. Ants in larger colonies appeared to 

utilize information to locate patches with high seed density and then extract more 

resources per unit area than small colonies (Figure 4.8). Even though foragers in large 

colonies had a higher density of foragers, each forager found seeds faster. Thus, large 

colonies compensate for increased density and increased travel time by foraging in high 

quality patches. This is contrary to the resource division patterns in mammals: larger 

mammals can persist on abundant, but lower quality, food patches (Brown et al. 1993, 

Ritchie & Olff 1999). 
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5.3 EXTRAPOLATING METABOLIC SCALING TO HUMAN SOCIETIES  

  

Space-filling metabolic networks integrate individual organisms and ant colonies by 

connecting all parts of the individual or the colony territory and enabling the organism or 

colony to function as a whole unit. The integration has mathematical consequences: 

integration introduces an additional dimension to distribution networks. Connecting all 

parts of a space via networks is a very general problem for which there are many 

solutions (Banavar et al. 1999, Fath et al. 2001, Gastner & Newman 2004a). The simplest 

network geometry, which integrates the shortest distances from a central location to all 

areas or volumes of a system, generates an allometric scaling of network delivery 

capacity with network size. Similar scaling may characterize the resource acquisition and 

distribution networks of human societies. 

In individual organisms and ant colonies, metabolic materials travel between a 

central place and the volume of the organism or space of the territory. In human societies, 

material and energy are acquired from and delivered to dispersed locations. Resources are 

transported not only between central hubs and outlying locations, but also directly 

between distant locations. The networks in human societies are further complicated 

because the dimensions of the space they fill are unclear. While roads and railways 

appear to function in two dimensions, other networks such as airline routes and the 

Internet may function at much higher dimensionality (Gastner & Newman 2004b). 

Additionally, as seen in the Pogonomyrmex, extending networks beyond organisms and 

exploiting information about the environment can change the scaling relationship 

between the size of a system and its metabolic rate.  
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Despite such complications, the way that network scaling affects foraging in 

colonies may shed light on how metabolic consumption influences human societies. For 

example, the work a colony must do to acquire seeds increases faster than the number of 

foragers. That is analogous to diminishing returns to complexity in human societies 

(Tainter 1990). As societies grow and become more complex, more and more work goes 

into sustaining the society (acquiring, transporting and defending resources) rather than 

directly delivering services and resources to the population.  

Agricultural production in the twentieth century provides an illustrative case of 

diminishing returns. Agricultural yield increased 6-fold, but the industrial metabolism 

which produced that yield increased 150-fold (Smil 2000). Diminishing returns are also 

evident in the Ontogenetic Growth Model (West et al. 2001). As an organism approaches 

its maximum size, more and more of its metabolism is allocated to maintenance, and less 

is available for growth and reproduction.  

Hall et al. (1986) define the energy return on investment (EROI) as energy 

acquired divided by the energy spent to acquire it. Tainter et al. (2003) suggest that large 

organisms and consumptive societies must either utilize high quality resources or 

increase social organization to acquire sufficient low quality resources. Metabolic theory 

provides a quantitative framework for measuring how the size of a social system affects 

the cost of building infrastructure to acquire and distribute resources.  

While humans appear to have evolved the same reproductive allocation strategies 

as other mammals, modern humans also exist in a social context. Human societies have 

evolved networks at a higher level of organization. The rate at which those networks 

deliver resources appears to constrain human ecology and life history. 
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