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Signatures of quantum chaos

• Level repulsion

P(s) ∝ se−πs
2/4

• Eigenstate delocalization

IPR =
∑
k

|〈ψk |φ〉|4 ∼ 1/N

• Loschmidt echo

F (t) = |〈ψrev (t)|ψ〉|2

|ψrev (t)〉 = e i(H+εV )te−iHt |ψ〉

• OTOC

F (t) = 〈V †(t)W †V (t)W 〉
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Symmetry of Hamiltonian systems

• In the study of quantum chaos, when a system is too complicated, we can no longer know
the detail of the Hamiltonian. Instead, we represent it with a matrix ensemble {H,P(H)}.
• We want the matrix ensemble to be as random as possible, while still satisfies some kind

of symmetry.

• Time translation symmetry:
dH

dt
= 0

• Space translation symmetry:
[H,P] = 0

• Rotational symmetry:
[H, J] = 0
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Symmetry of Hamiltonian systems

• Time-reversal symmetry : Hamiltonian H(x , p, t) invariant under t → −t, p → −p.

• A general time reversal operator can be written as:

T = UK , K :
∑
v

ψv |v〉 →
∑
v

ψ∗v |v〉

It further satisfies that TJT−1 = −J.

• For integer spin system:
[H,T ] = 0, T 2 = 1

Then we show that:
Hjk = (THT )jk = H∗jk

which means the matrix is real symmetric.
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Symmetry of Hamiltonian systems

• Based on the condition of symmetry, we can classify the matrix ensembles into three
classes: Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and
Gaussian symplectic ensemble (GSE).

Ensemble Time-reversal symmetry Rotational symmetry Invariant under

GOE Yes Yes orthogonal transformation
GUE No Yes unitary transformation
GSE Yes No symplectic transformation

• We also want the entries of the matrix to be independent.
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GOE

• GOE describes a probability distribution of real symmetric matrix P(H), let’s start with 2
dimensional matrix as an example:

H =

(
x y
y z

)
• The entries of H are independent:

P(H)dH = p1(x)p2(y)p3(z)dxdydz

• And the distribution is invariant under orthogonal transformation.

P(H)dH = P(H ′)dH ′, H ′ = OHO−1
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GOE

• We first assume that the transformation is infinitesimal:

O =

(
1 θ
−θ 1

)
, |θ| � 1

• Then in the leading term of θ, the change of variables becomes:

H ′ = OHO−1 =

(
x ′ y ′

y ′ z ′

)
x ′ = x − 2θy , y ′ = y + 2θx , z ′ = z + θ(x − y)
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GOE

• The requirement that P(H) = P(H ′) gives us a relation:

p1(x ′)p2(y ′)p3(z ′) = p1(x)p2(y)p3(z)

1

y

d ln p2

dy
− 2

x − z

(
d ln p1

dx
− d ln p3

dz

)
= 0

• Solve this relation, we obtain an expression for P(H):

P(H) ∝ exp
[
−A(x2 + z2 + 2y2)− B(x + z)

]
• We can always shift the energy levels to make sure Tr(H) = 0, thus:

P(H) ∝ exp[−ATr(H2)]
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GUE

• Similarly, we want P(H)dH to be invariant under infinitesimal unitary transformation:

U = I + iε · σ

• Analogously, to make sure P(H) = P(H ′):

(εx + iεy )

[
y

(
−d ln p1

dx
+

d ln p3

dz

)
+ (x − z)

d ln p2

dy

]
+ c .c = 0

• The result is exactly the same:

P(H) ∝ exp[−ATr(H2)]
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Eigenvalue distribution

• For GOE, change variables from (x , y , z) to (λ1, λ2, θ):

H =

(
x y
y z

)
=

(
cos θ sin θ
− sin θ cos θ

)
·
(
λ1 0
0 λ2

)
·
(

cos θ − sin θ
sin θ cos θ

)
• Calculate the Jacobian:

D(x , y , z)

D(λ1, λ2, θ)
= λ1 − λ2

• Then we have:

dH ∝ |λ1 − λ2|dλ1dλ2dθ

ρ(λ1, λ2) =

∫
P(H)dθ ∝ |λ1 − λ2|e−A(λ2

1+λ2
2)
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Eigenvalue distribution

• For GUE, change variables from (x , y , y∗, z) to (λ1, λ2, θ, φ):

H =

(
x y
y∗ z

)
=

(
λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2)e−iφ cos θ sin θ

(λ1 − λ2)e iφ cos θ sin θ λ1 sin2 θ + λ2 cos2 θ

)
• Calculate the Jacobian:

D(x , z ,Re(y), Im(y))

D(λ1, λ2, θ, φ)
= |λ1 − λ2|2 cos θ sin θ

• Then we have:

dH ∝ |λ1 − λ2|2 cos θ sin θdλ1dλ2dθdφ

ρ(λ1, λ2) ∝ |λ1 − λ2|2e−A(λ2
1+λ2

2)
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Eigenvalue distribution

• For general N level system, it can be proved that (See [Anderson et.al, 10]):

GOE : dH ∝
∏
i<j

|λi − λj |
∏
i

dλidO

ρ(λ1, λ2, · · · , λn) ∝
∏
i<j

|λi − λj |e−A
∑

i λ
2
i

GUE : dH ∝
∏
i<j

|λi − λj |2
∏
i

dλidU

ρ(λ1, λ2, · · · , λn) ∝
∏
i<j

|λi − λj |2e−A
∑

i λ
2
i

• Repulsion :
∏

i<j |λi − λj |. (Vandermonde determinant)

• Confinement : e−A
∑

i λ
2
i .
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Eigenvalue distribution

• GOE and GUE can both be included in a more general matrix ensemble, named Gaussian
β ensemble:

ρ(λ1, λ2, · · · , λn) = Cnβ

n∏
i<j

|λi − λj |β exp[−β
2

n∑
i=1

λ2
i ]

• The parameter β quantifies the “strength” of repulsion.

• β = 1, 2 correspond to GOE and GUE separately.

• The limit β → 0 represents Poisson statistics.
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Level spacing statistics

• Given the joint distribution of energy levels, we can analyze level spacing distribution:

P(s) = const

∫
dλ1

∫
dλ2δ(s − |λ1 − λ2|)|λ1 − λ2|βe−β(λ2

1+λ2
2)/2

• The results are :

P(s) =

{
sπ
2 e−πs

2/4, GOE
s232
π2 e−4s2/π, GUE

• This level spacing matches with the prediction of BGS conjecture.
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Level spacing statistics

• BGS conjecture : the eigenvalues of
quantum system whose classical
analogue is fully chaotic, obey the
statistics of level spacing predicted by
RMT.

Figure: Wigner-Dyson statistics
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Level spacing statistics

• P(s)ds : the probabilty that the spacing s between any neighboring energy levels lies in
the interval s → s + ds

• Another convenient formula:

P(s) =
d2E

ds2
, E (s) =

∫
Ω(s)c

ρ(λ1, · · · , λn)dλ1dλ2 · · ·λn

• E (s) : the probability that any interval of length s is empty of levels.

• Ω(s) : the set of events that at least one eigenvalue stays in a certain region of length s.
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Level spacing statistics

Figure: We want the probability that dx,dy has energy level while x+y is empty.
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Level spacing statistics

• E (x + y)− E (x + y + δx) : the probability that x + y is empty and δx is not.

E (x + y)− E (x + y + δx) ≈ −∂E (x + y)

∂x
δx

• The probability that x + y is empty and δx , δy are not empty:

∂2E (x + y)

∂x∂y
δxδy

• Given a level in δx , the probability of finding a level in interval x + y → x + y + δy :

∂2E (x + y)

∂x∂y
δy =

d2E (s)

ds2
ds = P(s)ds
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Averaged level density

• The probability distribution of a single eigenvalue:

ρ(E ) =

∫
dE2dE3 · · · dEnρ(E ,E2, · · · ,En)

• Semicircle law, for large systems N →∞:

ρ(E ) =

{
2
π

√
1− E 2, |E | ≤ 1

0, |E | > 1

• For rigorous proof, see [Anderson et.al, 10]
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Distribution of eigenvectors

• In P(H)dH ∝ e−ATr(H2)dH, H = OΛO−1, the distribution of O is Haar random. Given
eigenvector v = (a1, a2, · · · an), we have:

P(v) ∝ δ

(
n∑

i=1

a2
i − 1

)

• The distribution of the i th component of v is given by:

P(y) =

∫
da1da2 · · · danδ(y − a2

i )P(v)

∝ (1− y)(n−3)/2/
√
y
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Distribution of eigenvectors

• In the limit n→∞, this becomes:

lim
n→∞

P(y) ≈
(n

2
π
)1/2 1

√
y
e−ny/2

• Let η = ny , it becomes:

P(η) =

(
1

2π

)1/2 1
√
η
e−η/2, (Porter-Thomas distribution)

• By comparing to Porter-Thomas distribution, we can quantify how uniformly random a
probability distribution of unit vectors is.
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Periodic driven system

• Besides level statistics, RMT can also describe spectral fluctuations in some many body
systems. A common model that exhibits spectral fluctuation is quantum kicked top.

• The dynamics of quantum kicked top is described by the time dependent Hamiltonian:

H(t) = HX + THZ

∑
n∈Z

δ(t − nT )

• The evolution operator for any period [nT , (n + 1)T ] is called a Floquet operator:

UT = expT

[
−i
∫ (n+1)T

nT
H(t)

]
= exp [−iHXT ] exp[−iHZT ]

• For this specific model, it’s a lot easier to directly analyze the unitary operator UT .
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Circular matrix ensemble

• For large T , the spectral statistics of quantum kicked top matches with that of circular
matrix ensembles.

• Circular orthogonal ensemble (COE) has time-reversal symmetry. It has eigenvalue
distribution:

P(φ1, φ2, · · · , φn) =
∏
j<k

|e−iφj − e−iφk |

• Circular unitary ensemble (CUE), on the other hand, is similar to GUE:

P(φ1, φ2, · · · , φn) =
∏
j<k

|e−iφj − e−iφk |2
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Spectral form factor

• Given a Floquet operator U, its spectral density is defined as:

ρ(ψ) =
2π

N

∑
n

δ(ψ − ψn)

• Here we use 〈·〉ψ to denote mean level density.

〈f (ψ)〉ψ =
1

2π

∫ 2π

0
f (ψ)dψ

• Spectral fluctuation is reflected by:

R(θ) = 〈ρ(ψ + θ/2)ρ(ψ − θ/2)〉ψ − 〈ρ〉2ψ
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Spectral form factor

• The spectral form factor K (t), t ∈ Z , is the Fourier transformation of it.

K (t) =
N2

2π

∫ 2π

0
dθR(θ)e−iθt

=
∑
n

e−itφn ·
∑
m

e itφm − N2δt,0

→ 〈Tr(Ut)Tr(U−t)〉 − N2δt,0

• For COE and CUE, we have:

K (t) =

{
2t − t ln(1 + 2t/N), COE

t, CUE
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Numerical results [Kos et.al, 10]

• Comparison between numerical results and RMT prediction.

• Kicked Ising model:

HX =
∑
k

J
(1)
k Xk +

∑
k<l

J
(2)
k,l XkXl + · · ·

HZ = h
∑
k

Zk
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Relation to quantum simulation [Heyl et.al, 19]

• Trotter sequences as Floquet systems

U(n)(t) = [U1(t/n)U2(t/n) · · ·UM(t/n)]n

• Robustness of local observables

H = HZ + HX , HX = g
∑
l

Xl

HZ = J
∑
l

ZlZl+1 + h
∑
l

Zl

M(t) = 〈 1

N

∑
l

Zl〉
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Relation to quantum simulation [Heyl et.al, 19]

• Inverse participation ratio:

IPR =
∑
v

|〈ψv |φ0〉|4

• OTOC

F (t) = 〈V †(t)W †V (t)W 〉
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Summary

• Use the condition of symmetry + independence of entries, the Gaussian matrix ensembles
are derived.

P(H)dH ∝ exp[−ATr(H2)]dH

• After change of variables, we derive the joint distribution of eigenvalues:

ρ(λ1, λ2, · · · , λn) ∝
∏
i<j

|λi − λj |βe−β
∑

i λ
2
i /2

• Use this distribution, we can calculate many useful things, like level spacing distribution,
averaged level density and correlation functions. The level spacing distribution derived
matches with that of quantum chaotic systems.
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Summary

• Periodic driven system is a useful and important model for quantum chaos.

UT = exp[−iHXT ] exp[−iHZT ]

Its spectral statistics matches with that of circular ensembles.

• Spectral form factor directly reflects spectrum fluctuation.

K (t) = 〈
∑
n,m

e it(φn−φm)〉 − N2δt,0

• COE/CUE can explain the behavior of K (t) as well.
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