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• Growth of Poisson brackets:  
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Quantum Chaos

• We don’t have Phase space in Quantum mechanics (x and p don’t commute)

• We can study the spectral properties of the system (Changhao)

• Even understanding whether a system is integrable (given there is no classical limit) is a 
highly non-trivial (Manuel and Austin).

• There is a notion of thermalization of local observables in quantum chaotic systems (Sam 
and Mason)



Quantum Scrambling

• Localized information spreads within typical many-body systems fast (exponentially) in the 
scrambling time scale defining a form of quantum chaos.

• Quantum scrambling consists of two different mechanisms: spreading of information and 
entanglement transport.

• Spreading of information refers to transfer of information localized in some part of the 
system to the entirety in some way (related to Lieb-Robinson bound).

• Entanglement transport: Entanglement which was localized in some part of the system 
could also move to different parts of the system.

• Now we are formally going to understand about these two concepts.

[1] X. Mi and et.al, Information scrambling in computationally complex quantum circuits, arXiv preprint arXiv:2101.08870 (2021)
[2] ] J. Karthik, A. Sharma, and A. Lakshminarayan, Phys. Rev. A 75, 022304 2007



Scrambling and Propagation of Quantum Information

• One interesting question in many body physics is understand the question of how 
information which was localized spreads.

• Consider a simple scenario, a discrete one-dimensional system with some local degrees of 
freedom.  We have a Hilbert space      which can be written as, 

• Say we have Alice(A) and Bob(B), who are trying to communicate. Alice wants to send a bit 
and the way they have both access to a shared physical state   

[3] B. Swingle. Lecture notes on Quantum information scrambling



Scrambling and Propagation of Quantum Information

• Say we have Alice(A) and Bob(B), who are trying to communicate. Alice wants to send a bit 
and the way they have both access to a shared physical state   

• Depending on a, Alice applies a unitary       alternatively, she can do nothing, The 
probability that Bob obtains output b = 0, 1 given that Alice sent a is,

And using the fact that                                                       (If Alice does nothing Bob does not 
measure anything, Bob makes a measurement         of the system to try to learn Alice's bit)
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Scrambling and Propagation of Quantum Information

• Depending on a, Alice applies a unitary       , The probability that Bob obtains output b = 
0, 1 given that Alice sent a is,

• Where,        is the measurement done by Bob to know about Alice’s bit and

• We Could think of it as having another measurement setting, ∅, corresponding to no 
signal from Alice. The measurement operators then obey M∅ + M0 + M1 = I.  

[3] B. Swingle. Lecture notes on Quantum information scrambling



Entanglement spread

• So far, we thought of data being classical now we could assume a situation where there also 
entanglement in the picture.

• Consider two orthogonal initial states,          and          which differ by the application of some 
local unitary operator W at site r0 . And we have a Reference system (auxiliary system) R and 
we have the initial state 
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Entanglement spread

• So far, we thought of data being classical now we could assume a situation where there also 
entanglement in the picture.

• Consider two orthogonal initial states,          and          which differ by the application of some 
local unitary operator W at site r0 . And we have a Reference system (auxiliary system) R and 
we have the initial state 

• Note that if A and B are initially entangled, then even acting just on A conditioned on the 
state of R can lead to correlation between R and B.

• In other words, while at time zero the reference is entangled with a single spin in the chain, 
as time progresses, the reference will instead become entangled a complex collection of 
many spins.  

[3] B. Swingle. Lecture notes on Quantum information scrambling



Out of time ordered Correlators (OTOC)
• Localized information  spreads  within many-body systems exponentially fast in the 

scrambling time scale defining a form of quantum chaos.

• OTOC is a measure of scrambling in the system and thus becoming a measure of 
quantum chaos. 

• OTOC is defined as,

• Measures the overlap between two states, 

"An out-of-time-order correlator (OTOC) is a four-point correlation function that 

probes the way in which  (local) perturbation inhibit the cancellation between 
forward and backward evolution” by Swingle.

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Out of time ordered Correlators (OTOC)

• diagnoses the spread of quantum information by measuring how 
quickly two commuting operators fail to commute. 

• Consider, 

• We have three cases,



OTOCs in the semiclassical limit.

• For a classical chaotic system                         and we know 

• Now in the semiclassical limit,

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



OTOCs in the semiclassical limit.

• Now in the semiclassical limit,

• Consider the case                                            with                      and

• Now in the limit of a,b are small and in a small-time limit   using BCH formula we get, 

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



OTOCs in the semiclassical limit.

• Hence, we get

• Hence the phase of this correlation function initially diverges rapidly with t and, as 
higher order terms become important, the magnitude will also begin to decay.

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Scrambling, OTOC, and Loschmidt Echo  

• For the case of two unitary operators, we have

Where,

• Also, Loschmidt Echo (LE)  can be written as a time ordered correlator,
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Scrambling, OTOC, and Loschmidt Echo  

• For the case of two unitary operators, we have

Where,

• Also, we have Loschmidt Echo (LE) which is a time ordered correlator,

• Which can be rewritten as,

• LE measures decay to mean Lyapunov exponent of a corresponding chaotic system.

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Scrambling, OTOC, and Loschmidt Echo  

• LE measures decay to mean Lyapunov exponent of a corresponding chaotic system.

• Decay rate of OTOC depends not only on Lyapunov exponent but also on the number of 
degrees of freedom: higher the entropy slower the decay.

• Consider the case of n qubits (spin) under unitary evolution

• Fastest way to delocalize the information localized in any of the qubit is to apply a random 
two body unitaries between n/2 random spins for a time a length t.

• Time ordered auto correlation function decay requires a single step (relaxation of 
information) 

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Scrambling, OTOC, and Loschmidt Echo  

• Consider the case of n qubits (spin) under unitary evolution

• Fastest way to delocalize the information localized in any of the qubit is to apply a random 
two body unitaries between n/2 random spins for a time a length t.

• Time ordered auto correlation function decay requires a single step (relaxation of 
information) 

• Scrambling however requires information in one spin to spread exponentially fast to all spin 
chains and hence we require a total time 

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Scrambling, OTOC, and Loschmidt Echo  

Number of kicks

• Loschmidt Echo decays faster compared to OTOC, this is an indicator that OTOC 
also depends on the total degrees of freedom we need to access.

• LE goes like but                             where

[4] B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden, Phys. Rev. A 94, 040302 (2016).



Kicked Rotor: Classical dynamics

• The Hamiltonian of the Kicked Rotor is (K is the kicking strength)

• It describes a particle that is constrained to move on a ring (equivalently: a 
rotating stick). The particle is kicked periodically by a homogeneous field 
(equivalently: the gravitation is switched on periodically in short pulses

K=0.1                                                            K=1                                                         K=5

with KC = 0.971635



Kicked Rotor: Quantum case 

• The Hamiltonian of the Kicked Rotor is (K is the kicking strength)

• The time evolution operator under this Hamiltonian is the Floquet map is,

• We have these two quantities of interest,

[5] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett. 118, 086801 (2017).



OTOC in Kicked Rotor

• We can see that there is an 
exponentially growth till the 
Ehrenfest time for C(t), and 
saturates and universal 
behavior we will see in lot of 
systems

• Where as the behavior of B(t) 
does not give such insights.

[5] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett. 118, 086801 (2017).



OTOC in Kicked Rotor

The correspondence with classical behavior is clearly illustrated in this 
figures as well the notion of Ehrenfest time (which would be useful if 
there is no classical analogue) 

[5] E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Phys. Rev. Lett. 118, 086801 (2017).



OTOCs in a quantum Ising chain

• Consider the quantum Ising chain,

• Interestingly or not, this is an integrable model and we know the solutions of if using free 
fermions.

• One of the reasons being that it is one of the most studied many body system,

[6] C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018)



OTOCs in a quantum Ising chain

Rather than the exponentially 
growth we have seen for the case of 
chaotic case we see an algebraic 
growth which also indicates there is
no chaos

[6] C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018)



OTOCs in a Tilted field Ising chain

• Consider the Hamiltonian,

with

• Similar to the transverse Ising model we are studying,

[7] S. Xu and B. Swingle, “Accessing scrambling using matrix product operators”, 1802.00801 (2018).



OTOCs in a Tilted field Ising chain

[7] S. Xu and B. Swingle, “Accessing scrambling using matrix product operators”, 1802.00801 (2018).



OTOCs in a Tilted field Ising chain

[7] S. Xu and B. Swingle, “Accessing scrambling using matrix product operators”, 1802.00801 (2018).

• There are three regions of C(t)
(i) The initial exponential growth 
related to the Lyapunov 
exponent
(ii) The intermediate exponential 
growth but with a different
exponent due to conservation 
laws
(iii) The saturation regime

(i) 

(ii) 

(iii) 



Does Scrambling equal Chaos? 

• The unstable trajectories in a small neighborhood of a saddle can be enough for the OTOC 
to grow exponentially.

[8] T. Xu, T. Scaffidi, and X. Cao, Does Scrambling Equal Chaos? Phys. Rev. Lett. 124, 140602 (2020)

The parametrically long 
exponential growth of out-of-time 
order correlators (OTOCs), also 
known as scrambling, does not 
necessitate chaos. Indeed, 
scrambling can simply result from 
the presence of unstable fixed 
points in phase space, even in a 
classically integrable model.



Conclusion

• Scrambling is the propagation of localized information in quantum systems and OTOC is 
very good indicator for the scrambling in the system.

• There is a well-defined classical limit for OTOC and OTOC has more to offer than 
Loschmidt Echo. 

• Study of OTOC in one dimensional non-autonomous systems helps us in understanding 
the relation of OTOC to Lyapunov exponent

• The Many body systems : For integrable case we have algebraic growth and for non 
integrable there is well defined behavior of OTOC

• More to follow…. (wait for the next week! ) 

Thanks for Listening 
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