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Perhaps the hallmark study in human exercise
physiology was performed by Nobel Laureate
Professor AV Hill on himself in Manchester,
England in the early 1920s. Hill circled an 88 metre
grass running track at three different speeds each for
4 minutes while he measured his average oxygen
consumption every 30 seconds (Hill and Lupton;1

fig 2 of that paper). He concluded that his oxygen
consumption reached a maximum at 16 km/hour
‘‘beyond which no bodily effort can drive it’’.2 (page
1661) This experiment established the single most
popular test in the exercise sciences – the progressive
exercise test for the measurement of the maximum
oxygen consumption (VO2max). The experimental
protocol in this test forces the subject progressively
to increase the work rate until voluntary exhaustion.

According to the modern interpretation,3–14 the
outcome of this test defines the limits of the human
cardiorespiratory system, because it apparently ter-
minates when the cardiac output reaches a maximum
value.9 11 13 It also established a model to explain the
biology of human exercise performance, for if the
cardiovascular system determines maximal exercise
performance, then it must also determine perfor-
mance during many other forms of exercise, as
suggested by Bassett and Howley9 and others.15 16

Thus, champion athletes able to run very fast for long
distances do so because of the metabolic conse-
quences in their skeletal muscles of their superior
cardiovascular function,9 15 16 even though they exer-
cise at intensities below that at which the VO2max is
reached and at which, according to that model,
cardiovascular function is not maximal and cannot
therefore, by definition, be the ‘‘limiting’’ factor.

This explanation seems paradoxical because, if
correct, it predicts that athletes should be able to
exercise more vigorously and for longer simply by
increasing their (submaximal) cardiac outputs until
maximal values are reached. Only then should
exhaustion occur. Alternatively, any athlete chasing
the race leader should be able to increase the cardiac
output to a maximal value and so pass the leading
athlete, who is exercising at a lower and submaximal
cardiac output. However, this does not happen; as is
well known, prolonged exercise always terminates
at submaximal levels of cardiac output.

It is my opinion that the manner in which the
VO2max test is conducted has encouraged a reduc-
tionist mindset, which teaches that the ‘‘limits’’ of
exercise performance can be explained by one or
two cardiovascular variables, such as the cardiac
output and muscle blood flow,15 but the VO2max

test includes three components that are foreign to
all forms of freely chosen exercise.

First, the tested subject does not know the
expected duration of the exercise bout when it
begins. Accurate knowledge of the exercise dura-
tion optimises the exercise performance.17 Second,
the intensity of the exercise increases progressively,
sometimes rapidly8 from low to ‘‘maximal’’ work
rates. Humans do not usually exercise this way.
Third, the tested subject cannot regulate the
exercise intensity except by choosing when to
stop. This adds a subjective component to the test,
as the athlete’s conscious brain makes the final
decision when to terminate the exercise. Thus
psychological and not purely physiological factors
can presumably influence that decision.18

More to the point, a characteristic of freely chosen
exercise is the choice of different pacing strategies
that change continuously from moment to
moment.19–21 Unique, constantly changing pacing
strategies are most likely produced by a central motor
command that continually modulates the number of
motor units recruited in the exercising limbs.
However, during the VO2max test, this critical brain
function cannot be evaluated, because the change in
work rate is preset and immutable, thereby control-
ling the tested subject’s level of central motor output
in an unnatural way (fig 1).

Finally, the VO2max test has produced an unusual
definition of the intensity at which exercise is
performed, because the intensity is expressed relative
to that at which the VO2max occurs. Workloads
beyond those reached during the VO2max test are
defined as ‘‘supramaximal’’;5 12 however, this does
not make sense, because a (lower) exercise intensity
cannot be maximal if a higher exercise intensity can
be achieved, even if under different circumstances.

Experimental models such as the VO2max test have
their uses, because they can define the maximal
capacity of each human for oxygen use,15 but their
generalisability must be carefully scrutinised. Thus
one must ask: is it appropriate to explain the
physiological factors determining human exercise
performance according to an experimental model of
exercise in which (1) humans do not usually engage
and (2) the brain of the tested subject does not set
the pacing strategy as is usual in freely chosen
exercise? If we base our interpretations exclusively
on a testing model that is so unnatural as to exclude
the usual function of the brain during exercise, we
may miss the obvious. Thus, this traditional
reductionist explanation of the factors limiting the
VO2max excludes any possible contribution of the
brain and central motor command.3–9 11–14 The point
is, as Kayser18 reminds us, that exercise begins and
ends in the brain. Thus, before any movement can
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occur, the appropriate number of motor units in the exercising
skeletal muscles must first be activated by the central nervous
system. As a result, the power output of the exercising limbs
increases, raising the whole body oxygen consumption conse-
quent to metabolite-induced arteriolar vasodilation, which directs
the increase in blood flow to the exercising muscles. Thus, as is
usually taught in standard textbooks of human physiology22

increases in blood flow and cardiac output during exercise are
the consequence and not the cause of the increase in power output
by the exercising muscles. Attempts to point this out are usually
dismissed out of hand.23

However, the logical point is that this critical role of central
motor command cannot be identified if its most important
function — the setting of the pacing strategy — is the controlled
variable in the experimental model — the VO2max test — used to
predict athletic ability and to determine the factors that limit
human exercise performance. Rather as the subject’s pacing
strategy is predetermined during the VO2max test, the popular use
of this specific test must entrench the conclusion that exercise
performance is determined by the cardiovascular system, as it is
the only obvious candidate other than central motor command.

However, the absence of proof for an effect does not prove the
absence of that effect. If central motor command plays no part in
determining the VO2max, then the VO2max test must terminate
because a severe degree of peripheral fatigue has developed in the
exercising muscles as recently acknowledged: ‘‘…athletes stop
exercising at VO2max because of severe functional alterations at the
local muscle level due to what is ultimately a limitation in
convective oxygen transport, which activates muscle afferents
leading to cessation of a central motor drive and voluntary effort’’.15

This novel explanation differs from the more usual theory that
maximal exercise performance terminates purely as a result of the
development of ‘‘peripheral fatigue’’; however, it is closer to Hill’s
original theory that maximal exercise performance is limited by a
‘‘governor’’ in either the brain or heart,24 the function of which is

to terminate exercise before severe myocardial ischemia causes
irreversible heart damage or even death.

Remarkably, this presumption that the VO2max test produces
‘‘severe’’ alterations in skeletal muscle function has only just
been tested. Thus Thomas and Stephane25 have reported that
the function of the quadriceps femoris muscle was little affected
by the performance of a VO2max test of ,13 minutes that
terminated at a mean power output of 381 W and a mean
VO2max of 75 ml/kg/min. They also showed that oxygenation
of the pre-frontal cortex fell during exercise. They propose that
a decrease in oxygenation of the pre-frontal cortex may modify
central motor output to the exercising limbs, causing the
termination of exercise before the onset of peripheral skeletal
muscle fatigue.

This interpretation differs in two important ways from the
new model of Levine,15 which theorises that (1) sensory feedback
from fatigued skeletal muscles, not from an increasingly hypoxic
prefrontal cortex, causes a failure of central motor output and (2)
that this occurs only after the peripheral fatigue has already
developed. Interestingly, both models accept that the brain
ultimately determines when the exercise will terminate, a
significant conceptual advance.18 26 27

In a somewhat related study, Kabitz et al28 have reported that
electrically stimulated diaphragmatic force output increased
progressively during exercise but fell immediately exercise
terminated, but only when whole-body exercise was performed.29

The authors concluded that diaphragmatic fatigue develops after,
not during exercise, so that ‘‘the conventional understanding of
fatigue might be flawed because it does not distinguish between
the sensation itself and the physical expression of that
sensation26’’. Interestingly, there are studies showing that skeletal
muscle contractile function may also increase during exercise,30

indicating the absence of fatigue. However, the relevance of these
studies is not often acknowledged as they produce a result that is
so unexpected.31

Although the mechanisms explaining the unexpected findings
of Kabitz et al28 29 need to be determined, those studies should
encourage exercise physiologists to re-evaluate the implications
of studies showing that skeletal muscle contractile function
does not necessarily fall during exercise but may sometimes
increase.

Importantly, the studies of Kabitz et al28 29 raise the possibility
that the use of electrical stimulation to detect the presence of
‘‘peripheral fatigue’’ in skeletal muscle might theoretically
produce contrasting results if tested during exercise rather than
after the termination of exercise. Indeed, it is clear that electrical
stimulation overestimates the degree of ‘‘peripheral fatigue’’ that
may be present at the end of exercise. Thus, for example, the
study of Amann et al32 found that cyclists produced an ‘‘end
spurt’’ in 5 km cycling time trials in which their power outputs
reached higher values in the final 500 m than at any time during
the trials. Furthermore, power output during the end spurt
increased more than did lower limb EMG activities. This suggests
an increase in power production for each unit of EMG activity—
that is, an increase in the capacity of the voluntarily activated
skeletal muscle motor units to produce force, hence resulting in an
increased, not a reduced mechanical function. Yet, when studied
4 minutes after the end of exercise, the ability of these muscles to
produce a maximal voluntary contraction had fallen by ,10%
compared with pre-exercise values. Similarly, muscle-stimulation
techniques consistently found a reduction of ,35% in skeletal
muscle force production. The authors interpreted this finding as
evidence that the previously exercised skeletal muscles showed a
35% increase in ‘‘peripheral fatigue’’. All these discrepant findings

Figure 1 The homeostatic failure (catastrophic) model of human
exercise physiology originates from the testing method developed to
measure the factors that A V Hill believed limit maximal exercise
performance. In this protocol, the subject’s work rate is regulated by the
experimenter controlling the test, who increases the work rate
continuously until the subject chooses to terminate the exercise as a
result of ‘‘voluntary exhaustion’’. This experimental model has produced
the (reductionist) concept that exercise is ‘‘limited’’ by a failure of
homeostasis in either the exercising muscles (peripheral fatigue) or in the
central nervous system (central fatigue). This model violates the
fundamental teaching in normal human physiology, which holds that the
body uses feed-forward and feedback control, integrated in the brain, to
regulate homeostasis in all bodily systems under all environmental
conditions. The manner in which this ‘‘brainless’’ model of human
exercise physiology has gained ascendancy since the initial studies of
Hill and colleagues in 1923 has been described previously.26 27
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raise the question of how the extent of ‘‘peripheral fatigue’’
should be quantified during or after whole body exercise.

More to the point, if it is correct that cardiovascular function
determines maximal exercise performance when the work load
is set by the experimenter,15 then the cardiovascular system
must also explain the performance of humans when they set
their own pacing strategies19–21 (fig 2). Such strategies are
present essentially from the first muscular contraction33 and are
constantly changing.20 21 There is also usually an ‘‘end spurt’’
shortly before the end of exercise.32–34 As the pacing strategy is
evident from the onset of exercise, it must be anticipatory and
part of a feed-forward control mechanism (fig 2).19 21 35 36

How can the cardiovascular system determine the exercise
performance ‘‘in anticipation’’ even from the very onset of
exercise? How does it sanction moment-to-moment changes in
power output?20 21 And how does it produce the ‘‘end spurt’’,36

given that neither the heart nor the exercising limbs can ever
know when the exercise will end?

More logically, central motor command determines the exercise
intensity and sets the pacing strategy at the start of exercise, based
largely on the expected duration of the exercise bout or the
distance to be covered.37 The goal of the pacing strategy is to
complete the exercise bout without the development of total
exhaustion. However, this role of central motor command cannot
be detected when the pacing strategy is externally directed and
immutable as occurs during the VO2max test. To match the
progressive, experimenter-controlled increase in workload during
such testing, the central motor output of the tested subject must

progressively increase in order to recruit a progressively greater
number of motor units in the exercising muscles (fig 1).

Uniquely during the VO2max test, this increase occurs in
response to proprioceptive sensory feedback in response to the
externally directed increases in workload (fig 1) and not as part of
a feed-forward constantly changing central motor
command, anchored in part by the prior knowledge of the
anticipated exercise endpoint (fig 2).17 38 39 As the testing protocol
is predetermined, any feed-forward, anticipatory control by the
tested subject’s central motor command cannot be identified,
other than when it causes the subject to terminate the exercise.

In contrast, when the exercise is self-paced, the central motor
command probably determines the number of motor units that
are activated in the exercising muscles in a feed-forward manner
on the basis of prior experience, the specific circumstances in
which that activity is being undertaken, and the physical
condition of the subject, presumably among many other
factors.20 21 39 Once exercise commences, sensory feedback
continually modifies the response40 on a moment-to-moment
basis. These are clearly anticipatory responses, beyond the
capabilities of the cardiovascular system.33

There are also many published findings that cannot easily be
explained by the model depicted in fig 1, which holds that all
exercise performance is determined by the development of a
peripheral fatigue consequent to a limiting cardiovascular
function.15 16 Recently it has been shown that erythropoietin
(rHuEPO) administration has a greater effect on submaximal
than on maximal exercise performance.41 The authors acknowl-
edge that while ‘‘it would seem obvious that the main reason
(for the effects of rHuEPO administration is) ….. the augmented
oxygen carrying capacity of the blood’’, the improved exercise
performance ‘‘cannot be explained by the improvement in
VO2max alone’’. Logically rHuEPO administration does not
improve submaximal exercise performance by increasing muscle
oxygenation, as this could occur only if, in the absence of
rHuEPO use, the exercising muscles (of all humans) are
inadequately oxygenated. This conflicts with the established
finding that muscle blood flow and oxygen demand are
appropriately matched during submaximal exercise.42

Indeed, this conclusion is confirmed by the finding by the
same group that the intra-arterial infusion of ATP at near
maximal exercise increases blood flow without altering oxygen
consumption.43 This establishes that (1) blood flow during near
maximal exercise is indeed appropriate for the muscular demand
so that (2) this (and lower) intensities of exercise cannot be
‘‘limited’’ by an inadequate blood flow and oxygen delivery.
Thus under those experimental conditions, the rate of blood
flow and oxygen delivery could not have determined the
exercise performance; rather, the exercising work rate set the
demand for blood flow and oxygen delivery as it must.23 Indeed,
the analogous finding that the coronary blood flow is
submaximal during ‘‘maximal’’ exercise in normoxia44 45 indi-
cates that the heart achieves its ‘‘maximal’’ cardiac output at
submaximal rates of coronary blood flow.

This finding that skeletal muscle blood flow is submaximal
during ‘‘maximal’’ exercise has also recently been independently
confirmed. Thus Barden et al46 found that the infusion of
adenosine increased blood flow and skeletal muscle oxygen
delivery during maximal one-legged extension exercise without
increasing the VO2max. They concluded that skeletal muscle has
vasodilatory reserve during maximal exercise confirming that in
their experiments, the VO2max was not limited by an inadequate
blood flow and oxygen delivery. Predictably, they did not cite
the anticipatory model (fig 2) to conclude that adenosine

Figure 2 The anticipatory (central governor) model proposes that human
exercise performance is regulated (not limited) by a complex, intelligent
system, the goal of which is the maintenance of homeostasis in all bodily
systems. According to this model, subjects begin exercise at an intensity
that is determined by their physiological capacity including their state of
training, the expected duration of the exercise bout, their previous
experience and the relative importance of the exercise bout, among many
other potential influences. This established the feed-forward component of
the central motor command, which determines the initial pace by recruiting
the appropriate number of motor units in the muscles in the exercising limbs.
Feedback from a variety of organs that monitor both the internal and external
environment, then modify the pace by altering the number of motor units
recruited in the exercising limbs. The goal of this control is to ensure that the
exercise bout terminates before there is damage to any organ system as a
result of a failure of homeostasis. The symptoms of fatigue become
progressively more severe during exercise in order to ensure that exercise
terminates within a predetermined and safe duration.26–28 31 33 36 39 40 47 60 61 65
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therapy cannot increase the VO2max unless it first increases
central motor command and therefore the number of motor
units that are activated in the exercising limbs. The work rate
must first increase before there can be an increased demand for
and hence utilisation of oxygen. Like others,23 all these authors
are apparently wedded to the concept that oxygen delivery
alone determines the power output of the exercising limbs, and
thus, they appear blind to a converse interpretation (fig 2).

The most clearly established paradox that disproves this
theory is its prediction that cardiovascular function determines
exercise performance at altitude. It is difficult to understand
how cardiovascular function can determine performance at
extreme altitude,14 as ‘‘maximal’’ exercise in severe hypoxia
terminates at low levels of cardiovascular and metabolic stress.47

If cardiovascular function truly limits exercise performance
then, as already argued, exercise in extreme hypoxia must
always terminate with a maximal cardiac output. However, this
clearly does not occur.

In contrast, there is a growing body of evidence that shows
that central motor command is altered during prolonged
exercise and contributes substantially to the impaired exercise
performance that typically occurs during and after such
exercise.48–58

In summary, the classic studies of Hill and Lupton1 and the
development of the VO2max test59 probably explain why most
modern exercise physiologists seldom consider that central
motor command to the exercising muscles could be an
important regulator of human exercise performance. In this
unnatural form of exercise, the pacing strategy is predeter-
mined, immutable and imposed on the experimental subject
(fig 1). As a result, the key function of anticipatory (feed-
forward) central motor output in establishing the pacing
strategy during exercise19–21 23 33 35 cannot be identified; rather,
it is the controlled variable in the study. In contrast, when
humans exercise voluntarily, their brains chose patterns of
central motor command (pacing strategies) that will optimise
their performances under the prevailing conditions (fig 2). This
is probably achieved through a regulation of the number of
motor units that are active in the exercising limbs initially from
the start of exercise. As the exercise progresses, the number is
reduced or increased on the basis of sensory feedback and
knowledge of the exercise endpoint.17 23 32 35 38 40 60 61 Near the
end of exercise, the end spurt occurs consequent to an increased
skeletal muscle activation.23 32 34 38 61 62

The finding that all the motor units in the exercising limbs
are never recruited during any form of exercise testing, whether
for the measurement of the VO2max

27 or the maximum
voluntary contraction (MVC),63 indicates that central motor
command to the exercising muscles regulates the exercise
performance.39 However, this crucial component of brain
function during exercise can be identified only during self-paced
exercise19–21 32 34–36 40 61 and not during the VO2max test.1–14 59 64

Perhaps it is now time to develop novel testing methods in
which the contribution of each athlete’s central motor com-
mand—for example in establishing the pacing strategy and the
timing and magnitude of the ‘‘end spurt’’32–34 36 during competi-
tion—can be measured in order further to improve our capacity to
quantify athletic ability and predict athletic performance. That
the measured VO2max is a relatively poor predictor of both the
performance potential of athletes with similar athletic ability and
of the changes in performance that occur with continued training
over months or years65 should encourage both basic and applied
sports scientists to reconsider the real value of this iconic test.
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