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Outline

Adiabatic quantum computing (AQC) is a paradigm of quantum computing based on 
continuous-time evolutions, in contrast to the discrete-time step evolutions of circuit-
based algorithms. 

My presentation will try to give enough of the background for these important topics, but 
given the time constraints I will not dive too deeply into any given topic.  The references I 
provide will hopefully give you a place to explore each topic more deeply. I apologize if I 
have neglected to cite particular work that might be relevant. Please email me at 
talbash@unm.edu to let me know and for any other corrections.

• Adiabaticity and the adiabatic condition

• Adiabatic quantum computation and its equivalence to the circuit model

• Unstructured search in the adiabatic paradigm

• Quantum adiabatic optimization

• Beyond adiabatic: Glued-trees problem

• Open quantum system effects

• Quantum annealing, and current experimental realizations

• Final comments

Presentation material can be found here: 

https://www.unm.edu/~talbash/presentations.html

mailto:talbash@unm.edu
https://www.unm.edu/~talbash/presentations.html


Terminology

Continuous-time evolution of a quantum state is given by the Schrödinger equation
d
dt

|ψ(t)⟩ = −
i
ℏ

H(t) |ψ(t)⟩

Generator of the evolution is a Hermitian operator  called the Hamiltonian of the 
quantum system.  

• Eigenvalues are called the energy levels of the quantum system.  Smallest eigenvalue 

 is called the (instantaneous) ground state energy of the quantum system.  Higher 
eigenvalues are called excited state energy levels.


• Eigenstates are called energy (eigen)states.  Eigenstate associated with  is called 
the (instantaneous) ground state .


• Energy difference between ground state and the first excited state energy levels is 
called the ground state energy gap, .
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Will be setting  from now onℏ = 1



Adiabatic Condition

Given an initial quantum state prepared in the -th eigenstate of , an evolution 
that satisfies the adiabatic condition will be in the corresponding -th eigenstate at 
time  with high probability, assuming no energy level crossings.  (The adiabatic 
condition is a sufficient but not necessary condition.)

i H(0)
i

tf

We will assume that the Hamiltonian only depends on a dimensionless parameter 
 , where  is the total evolution time. s = t/tf ∈ [0,1] tf H(t) → H(s), Ei(t) → Ei(s)

tf ≫ max
s∈[0,1]

|⟨E1(s) | d
ds H(s) |E0(s)⟩ |

Δ2
10(s)

Physically motivated 
condition [Ami2009]:

Rigorous condition

[Kat1950,Jan2007]:

Minimizes the transition rate 
out of the ground state

tf ≫ max { max
s∈[0,1]

∥∂2
s H(s)∥

Δ2
10(s)

, max
s∈[0,1]

∥∂sH(s)∥2

Δ3
10(s)

, max
s∈[0,1]

∥∂sH(s)∥
Δ2

10(s) }
Scaling of  with system size to satisfy the adiabatic condition primarily depends on 
how the minimum gap  scales with system size.

tf
Δmin = min

s∈[0,1]
Δ10(s)

|⟨Ei(s) |ψ(t = 0)⟩ |2 = 1 → |⟨Ei(s = 1) |ψ(t)⟩ |2 ≈ 1 , t ∈ [0,tf ]

Take the case of ; the adiabatic condition then takes the form:i = 0



Examples of evolutions: fast

E0(t)

E1(t)
E

Δ10(t)

t

0

tf ≪ (Δmin)−2

We will write our quantum state evolutions in the instantaneous energy eigenbasis

|ψ(t)⟩ = ∑
k

ck(t) |Ek(t)⟩

Let’s assume we are initially completely in the ground state

We will have qualitatively three kinds of behavior

(1) Diabatic transition to excited state

Evolution very fast relative to gap

0 |c0(t) |2

1 |c1(t) |2
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Examples of evolutions: medium
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We will visualize wavefunction evolutions in the instantaneous energy eigenbasis
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(2) Partial transition to excited state

Evolution still fast relative to gap 
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Examples of evolutions: slow
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Examples of evolutions: slow

E0(t)

E1(t)
E

0

Δ10(t)

t

We will visualize wavefunction evolutions in the instantaneous energy eigenbasis

|ψ(t)⟩ = ∑
k

ck(t) |Ek(t)⟩

(3) Negligible transitions (adiabatic) 

Evolution slow enough relative to gap

0 |c0(t) |2

1 |c1(t) |2

Let’s assume we are initially completely in the ground state

We will have qualitatively three kinds of behavior

tf ≫ (Δmin)−2



Examples of evolutions: slow
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Adiabatic Evolution as an Algorithm

(1) a Hamiltonian  with an easily (efficiently) prepared ground state.H0

ex. Transverse field Hamiltonian: H0 = −
n

∑
i=1

σx
i → |E0⟩ = | + ⟩⊗n

(2) a Hamiltonian  whose ground state encodes the solution to a computational 
problem. The objective is to find this ground state. (Examples to come)

H1

(3) a continuous interpolating Hamiltonian  that interpolates between 
 and .

H(s)
H(s = 0) = H0 H(s = 1) = H1

ex. Linear interpolation:    (  )H(s) = (1 − s)H0 + sH1 s = t/tf

Starting from the ground state of , an evolution satisfying the adiabatic condition 
gives a guarantee of finding the ground state of  with high probability. 

H0
H1

Adiabatic algorithm [Apo1988,Apo1989,Som1991,Ama1993,Fin1994,Kad1998,Far2000] 

is defined by

Gives a very generic algorithm for preparing ground states of Hamiltonians that can 
be physically implemented, ex. Molecular Hamiltonians 



Efficiency of Adiabatic Algorithm

Efficiency of the adiabatic algorithm is given by how  must scale with system size  to 
ensure adiabatic condition is satisfied.

tf n

Numerator of the adiabatic condition scales at most polynomially with system size, so 
typically the dominant dependence on system size comes from the minimum gap along 
the interpolation .  Reporting the scaling of the minimum gap is then equivalent to 
reporting the efficiency of the algorithm.

Δmin
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Benchmarking to DateQAO with Non-stoquastic CatalystEquivalence of Adiabatic and Circuit Model

We can encode the output of any quantum circuit of depth  (to simplify the 
construction, we assume all single and two qubit gates are applied sequentially) into 
the ground state of a Hamiltonian  [Kit2002] such that there exists an interpolation 

 with a minimum gap  that scales polynomially with  [Aha2007].

L

H(1)
H(s) Δmin L

The above Circuit-to-Hamiltonian mapping can be thought of as a “proof-of-principle” 
construction and not necessarily the most efficient way to realize adiabatic algorithms.  
More native constructions can reproduce circuit speedups (see [Hen2014] for an 
example).

This Circuit-to-Hamiltonian mapping shows that adiabatic quantum computation is 
equivalent to circuit quantum computation up to a polynomial overhead, .


➡ Any exponential speedups in the circuit model can be realized in principle in 
the adiabatic model. 


➡ Overhead of the mapping may mean that polynomial speedups are not 
preserved. 

tf ∼ poly(L)

Better estimates of the gap were presented in [Dei2007,Doo2020]; improvements on 
ground state overlap with the state at the end of the circuit [Cah2018,Bau2018]; we 
can expect limits to how much the gap can be improved in these constructions 
[Gan2013,Gon2018].



Benchmarking to DateQAO with Non-stoquastic CatalystUniversal Adiabatic Quantum Computer

A minimal set of programmable Hamiltonian terms with real coefficients to implement 
universal adiabatic quantum computing are [Bia2008]:

{σx
i , σz

i , σx
i σx

j , σz
i σz

j }

{σx
i , σz

i , σx
i σz

j , σz
i σx

j }
H(s) = ∑

i

(hx
i (s)σx

i + hz
i (s)σz

i ) + ∑
i<j

(Jx
ij(s)σx

i σx
j + Jz

ij(s)σz
i σz

j )ex.

The local Hamiltonian problem associated with this Hamiltonian (at a fixed 
interpolation point ) is also QMA-complete (for a review, see 
[Aha2002,Gha2013,Gha2015])

s

Even if you had a universal adiabatic quantum computer, there is no guarantee that 
you could find the ground state of all the programmable Hamiltonians efficiently (QMA 
is not expected to be in BQP)



Example: Unstructured Search (Grover search)

(1) Computational task is to find a ‘marked’ state  among  possible states 
[Gro1996].  Encode problem in the -qubit Hamiltonian:

m N = 2n

n

H1 = 1 − |m⟩⟨m |

Ground state is  with energy 0, and all other states have energy 1.|m⟩

(2) Pick initial Hamiltonian with easily prepared ground state [Rol2002]:

H0 = 1 − |ϕ⟩⟨ϕ |

where .  Ground state is  with energy 0.|ϕ⟩ = | + ⟩⊗n =
1

N ∑
x

|x⟩ |E0⟩ = |ϕ⟩

(3) Consider the linear interpolation H(s) = (1 − s)H0 + sH1

Energy landscape has no structure and gives no indication of direction to go in.  
“Searching for a needle in a haystack”.  Only classical approach is to randomly 
search all states, which takes on average  time (the time it takes to find the 
marked state scales linearly with the number of states to search)

𝒪(N )



Example: Unstructured Search (Grover problem)
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Hamiltonian spectrum is very simple for this problem

Δ10(s = 1/2) =
1

N
E0(s)

E1(s)

E2(s), …EN−1(s) = 1

Adiabatic condition predicts 
a runtime scaling of . 
This does not achieve the 
quadratic speedup of 
Grover’s algorithm [Gro1996] 
in the circuit model.

𝒪(N )

But we are free to choose other interpolation schedules.  We can choose an 
interpolation the slows down around the minimum gap and speeds up elsewhere.  
Specifically, we can choose an interpolation that is locally adiabatic [Rol2002]

H(s) = (1 − Φ(s)) H0 + Φ(s)H1

Φ(s) =
1
2

+
1

2 N − 1
tan [(2s − 1)tan−1 N − 1]

New runtime scaling is  [Rol2002], recovering 
quadratic speedup of Grover’s algorithm [Gro1996].

𝒪( N )



Example: Unstructured Search (Grover problem)

The energy landscape of  is different from that of H1 H(s)

Using the spin-coherent path integral formalism, we can associate with our 
interpolating Hamiltonian a semi-classical energy potential  [Kla1976]:V(s)

V(s) = ⟨Ω |H(s) |Ω⟩

|Ω⟩ = ⊗n
j=1 (cos

θj

2
|0j⟩ + eiφj sin

θj

2
|1j⟩)

The global minimum of this landscape is the spin-coherent approximation of the 
quantum ground state, and an adiabatic evolution attempts to follow this global 
minimum.  The bottleneck is when the global minimum of this landscape changes 
discontinuously.
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2n

If marked state is all-zero state, 
Hamiltonian has qubit-permutation 
symmetry, and we can consider the 
case where .

Scaling properties of the barrier 
separating the two minima coincides 
with scaling of the minimum gap 
[Kon2015,Mut2016].

θj = θ, φj = 0,∀j



Example: Unstructured Search (Grover problem)

Expressing the problem Hamiltonian, , in terms of Pauli operators 
requires up to -body Pauli operators  a highly non-local operator.

H1 = 1 − |m⟩⟨m |
n →

Example of an oracular speedup: given access to such a Hamiltonian, a quadratic 
speedup over classical approaches is possible.

Important caveats: 

Optimized interpolation schedule works because the spectrum and the location of 
the minimum gap are fixed and independent of the marked state.

➡ Interpolation schedules can improve performance but requires knowledge of the 
position and magnitude of the minimum gap to be effective.  Remains an active 
area of research on how to do this [Jar2018].



Example: Quantum Adiabatic Optimization

General optimization cost functions  over bit strings can be straightforwardly 
encoded as a Hamiltonian. Special case: Quadratic Unconstrained Binary 
Optimization problems (QUBOs) are equivalent to Ising Hamiltonians: 


  ex. QUBO:    

C(x)

H1 = ∑x
C(x) |x⟩⟨x | → H1 = ∑i

hiσz
i + ∑⟨i, j⟩

Jijσz
i σz

j

Finding the ground state of the Ising problem (on a non-planar graph in the 
absence of local fields, or on a planar graph in the presence of local fields) is NP-
hard [Bar1982], so all problems in NP can be mapped to it (with some overhead) 

NP Problem Application
Traveling salesman Logistics, vehicle routing

Minimum Steiner tree Circuit layout, network design
Graph coloring Scheduling, register allocation
MAX-CLIQUE Social networks, bioinformatics

QUBO Machine learning, software V&V
0-1 Integer Linear Programming Natural language processing

Sub-graph isomorphism Chem-informatics, drug discovery
Job shop scheduling Manufacturing

MAX-2SAT Artificial intelligence



Example: Quantum Adiabatic Optimization

H0 = − ∑i
σx

i

Initial Hamiltonian, often called the driver Hamiltonian, is taken to be the uniform 
transverse field Hamiltonian

For special class of problems minimum gap can be bounded [Dam2001,Rei2004], 
so efficiency of adiabatic algorithm can be determined.  These problems are again 
oracular in nature and are not physically meaningful problems.

H(s) = A(s)H0 + B(s)H1 , A(1) = 0, B(0) = 0

In the case of local Ising problems, no known example of a speedup exists.  This is 
both due to the fact that we cannot determine the gap scaling at large system sizes 
to determine the efficiency of the algorithm or has been ruled out by lots of hard 
work [Far2001,You2008,You2010,Far2012].  At the same time, we do not expect to 
be able to solve NP-hard problems in polynomial time on a quantum computer.  But 
the hope is that there may still be restricted classes of problems that we can solve 
more efficiently than we can classically (ex. maybe not an exponential speedup but 
a quadratic speedup) .

Evolving adiabatically to find the ground state of the “diagonal-in-the-
computational basis” Hamiltonian  is called quantum adiabatic optimization.H1



Stoquastic vs Non-Stoquastic

There is folklore that Hamiltonians of the form:

 


are not amenable to a quantum advantage.  This belief stems from the fact that these 
Hamiltonians are ‘stoquastic’.  A Hamiltonian is stoquastic if its off-diagonal elements (in 
the computational basis) are real and non-positive, up to local unitary transformations 
[Bra2008,Bra2009]. 

H(s) = − A(s)∑i
σx

i + B(s)HIsing

• Adiabatic ground state evolution using stoquastic Hamiltonians is not expected to be 
universal [Bra2008].


• The ground state and thermal equilibrium properties of the ferromagnetic transverse-field 
Ising Model can be efficiently computed classically [Bra2015,Bra2017].


• Quantum Monte Carlo (QMC) methods provide an efficient mapping (in terms of space) to 
a classical system to study thermal states of stoquastic Hamiltonians.  QMC is also 
efficient in time for 1d Stoquastic Hamiltonians [Cro2021a].

• QMC is known to face obstructions that the adiabatic algorithm does not 
[Has2013,Jar2016].


• Recent result shows that adiabatic evolutions with stoquastic Hamiltonians can exhibit 
super-polynomial quantum speedups over all classical algorithms [Has2020,Gil2020].  
Whether this translates to speedups for real-world problems remains an open question. 



Non-Stoquastic Quantum Adiabatic Optimization

So why not use a non-stoquastic Hamiltonian, ex.

 H(s) = − (1 − s)∑i

σx
i + s(1 − s)∑⟨i, j⟩

σx
i σx

j + sHIsing

• In the generic case, the non-stoquastic Hamiltonian has a smaller gap that its stoquastic 
counterpart [Cro2014,Hor2017,Cro2020].

• Only a handful of problems are known to exhibit a gap enhancement for the non-
stoquastic case [Sek2012,Dur2019,Alb2019].  Majority of examples are based on highly 
symmetric problems, such as the p-spin model:

HIsing → − n ( 1
n ∑

i

σz
i )

p

which exhibit a change from exponentially closing to polynomially closing minimum gap, 
but are classically trivial problems to solve.

It remains an open question under what conditions a non-stoquastic Hamiltonian can help 
improve the efficiency of quantum adiabatic optimization. 



Benchmarking to DateQAO with Non-stoquastic CatalystBeyond Adiabatic

Recall that the adiabatic condition is only a sufficient condition on reaching the 
ground state with high probability

We can still use an interpolating Hamiltonian but not restrict the evolution to be 
adiabatic.

Why should we think this could be advantageous?

• Adiabatic evolution in excited states of stoquastic Hamiltonians is universal 
[Jor2010] 

• A very convincing example: polynomial time algorithm for solving the glued trees 
problem [Som2012].  An exponential speedup over classical algorithms.

An overview of the promise of this approach, dubbed diabatic quantum annealing 
(DQA), can be found in [Cro2021b].



Example: Glued Trees Problem

Glued Trees Problem [Chi2003]: Two binary trees “glued” randomly.  All vertices 
except for the “ENTRANCE” and “EXIT” vertices have degree three.  Each vertex is 
labeled by a random -bit string.  A total of  vertices.


Computational task: Starting from the “ENTRANCE” vertex, find the “EXIT” vertex.  
You can only query the adjacency matrix of the graph ; for a given vertex, the query 
tells you the three/two connected vertices.

2n N = 2n+2 − 2

A

j = 0 j = 1 . . . . . . j = n j = 2n + 1. . .. . .j = n + 1

ENTRANCE

a0

EXIT

aN−1

Random labelling of 
vertices means classical 
algorithms “get lost” and 
take exponential time in 
the size  to find the EXIT 
vertex.

n



Example: Glued Trees Problem

H0 = − |a0⟩⟨a0 |

Initial Hamiltonian has “ENTRANCE” vertex as ground state; Final Hamiltonian has 
“EXIT” vertex as ground state

H1 = − |aN−1⟩⟨aN−1 |

Interpolation Hamiltonian uses adjacency matrix  of the graph to drive transitions 
[Som2012]

A

H(s) = α(1 − s)H0 − s(1 − s)A + αsH1
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 finds EXIT vertex with high probability.  Example of exponential 
speedup over classical algorithms.
tf ∼ 𝒪(poly(n))

|hE0(s)| (s)i|2

|hE1(s)| (s)i|2

|hE2(s)| (s)i|2
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E2(s)

<latexit sha1_base64="+zWHLy2mkdkxaAEz4MBkLeRxeSE=">AAAB7XicdVDLSgMxFM34rPVVdekmWIS6GZK2tHZXFMFlBfuAdiiZNNPGZjJDkhHK0H9w40IRt/6PO//G9CGo6IELh3Pu5d57/FhwbRD6cFZW19Y3NjNb2e2d3b393MFhS0eJoqxJIxGpjk80E1yypuFGsE6sGAl9wdr++HLmt++Z0jySt2YSMy8kQ8kDTomxUuuqXyzos34uj9waqhQrCCK3Ui7has0SjFERlyB20Rx5sESjn3vvDSKahEwaKojWXYxi46VEGU4Fm2Z7iWYxoWMyZF1LJQmZ9tL5tVN4apUBDCJlSxo4V79PpCTUehL6tjMkZqR/ezPxL6+bmODcS7mME8MkXSwKEgFNBGevwwFXjBoxsYRQxe2tkI6IItTYgLI2hK9P4f+kVXRx2a3dlPP1i2UcGXAMTkABYFAFdXANGqAJKLgDD+AJPDuR8+i8OK+L1hVnOXMEfsB5+wS3Uo6Z</latexit>

(  is a constant that does not depend on )α n



Open Quantum System

Our discussion so far has assumed the evolution of the quantum system is described 
by Schrödinger dynamics  closed system dynamics→

In the presence of an environment (ex. another quantum system) with which the 
quantum system interacts, the effective dynamics of our quantum system is no 
longer given by Schrödinger dynamics  open system dynamics [Bre2002,Lid2019]→

The exact dynamics depends on the type of environment and interaction.  Here we 
will consider a model that is perhaps the most innocuous for adiabatic evolutions: 
the weak-coupling Markovian adiabatic master equation (AME) [Dav1978,Alb2012]

Express density matrix in instantaneous energy eigenbasis:

ρ(t) = ∑i, j
ρij(t) |Ei(t)⟩⟨Ej(t) |

Key properties of AME for continuous-time evolutions [Alb2015b]:

• Dephasing in instantaneous energy eigenbasis: off-diagonal elements  decay 

exponentially

• Dynamics pushes system density matrix towards instantaneous Gibbs state

ρij(t)

lim
tf→∞

ρ(t) →
e−βH(t)

Z



Open Quantum Effects

Dephasing in instantaneous energy eigenbasis: off-diagonal elements  decayρij(t)

In the adiabatic setting, system follows instantaneous energy eigenstate with some 
overall phase.  Phase relationship between instantaneous energy eigenstates not 
relevant, so dephasing is innocuous.  

In the non-adiabatic setting, coherent transitions between instantaneous energy 
eigenstates requires coherent phase relationship, so dephasing is harmful.  

Dynamics pushes system density matrix towards instantaneous Gibbs state

(we will call this thermalization)

If thermalization time scale is fast (faster than the algorithm time  ), population in the 
ground state depends on Hamiltonian spectrum and temperature.

tf



Open Quantum Effects

0.495 0.500 0.505 0.510

0.495

0.500

0.505

0.510

t/tf

En
er

gy
1 2 3 4

�(t)

1

No significant 
change in the state

3

Population recovery 
from the first excited 

state via thermal 
relaxation

4

Dynamics slowed 
down


(depends on the 
interaction)

2

Population loss to the 
first excited state via 
thermal excitations
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Quantum Annealing

Currently used as a generic term that encompasses continuous-time evolution 
algorithms with an interpolating Hamiltonian for finding the ground state of some target 
classical Hamiltonian, either adiabatically or not, in the closed-system setting or not.

How do we quantify the time cost of such algorithms [Røn2014]?

Each anneal ends with a computational basis measurement and returns a bit-string 
with probability .  Let  denote the probability of success 
(success can be defined as finding the ground state or finding a solution below a given 
target energy) for an anneal with total time  .

x
px(tf ) = |⟨x |Ψ(tf )⟩ |2 pS(tf )

tf

Time-to-solution (TTS) metric: Number of independent anneals/repetitions  of the 
algorithm required to succeed at least once with 99% confidence, times the time of a 
single anneal 

R(tf )

tf

TTS(tf ) = tf R(tf ) = tf
log(1 − 0.99)
log(1 − pS(tf ))

Gives a way to compare computational cost for a wide range of algorithms



Scaling Analysis

TTS(tf ) = tf R(tf ) = tf
log(1 − 0.99)
log(1 − pS(tf ))

For a given instance from a given problem class, different ’s give a different TTS.  
How to then choose  ?

tf
tf

For each  , calculate quantiles of the TTS for the sample of instances from the 
problem class at a given size .  For each percentile, pick the  value that minimizes 
the TTS for that problem size.

tf
L tf
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(TTSmin)q=0.5 ∼ L5.8±0.2



Benchmarking to DateQAO with Non-stoquastic CatalystD-Wave Quantum Annealer

The first physical realization of quantum annealing using superconducting circuits on 
large scales [Joh2011].  Low energy spectrum realizes transverse field Ising model

H(s) = − A(s)∑i
σx

i + B(s)HIsing

with the Ising Hamiltonian limited to 
interactions on a specific connectivity graph 

 with vertices and edges . Until 
recently, the graph of the D-Wave devices 
was a Chimera graph [Cho2011], and its 
current generation device is based on a 
Pegasus graph [Boo2020] .

𝒢 = (𝒱, ℰ) 𝒱 ℰ

HIsing = ∑
i∈𝒱

hiσz
i + ∑

⟨i, j⟩∈ℰ

Jijσz
i σz

j



Benchmarking to DateQAO with Non-stoquastic CatalystShort D-Wave History

Thermal and noise effects have dominated the output statistics of the device. 


• At small system sizes, devices behaves comparably to AME [Alb2015a,Alb2015c] 
with noisy Ising parameters [Vuf2020,Nel2022], but actually AME description breaks 
down near small gaps and more accurate models are needed to quantitatively match 
D-Wave output [Boi2016]. 


• At larger sizes and long times, output is well captured by “simulated quantum 
annealing” (SQA) [Boi2014], a simulation technique using a sequence of (path 
integral) QMC simulation replicating the interpolating Hamiltonian  
[San2002,Mar2002].


• At larger sizes, output is also well captured by the semi-classical counterpart of SQA, 
often referred to as Spin-vector Monte Carlo (SVMC) [Shi2014].  This is primarily 
because the DW operating temperature is too high, so for a large number of 
realization of  there is little difference between the behavior of SVMC and SQA. 
This is particularly problematic because SVMC is a model that does not include 
important quantum effects such as tunneling and entanglement.


• Not all experiments on the D-Wave processor can be reproduced by SQA and SVMC 
[Lan2014,Alb2015a].

H(s)

H(s)

To zeroth order, one can think of the dynamics as simply thermalizing in the instantaneous 
Hamiltonian  with the energy scales set by  and the physical temperature of 
the device. 

H(s) A(s), B(s)



Benchmarking to DateQAO with Non-stoquastic CatalystThermalizing Quantum Annealers for Optimization

To date (June 2022), no quantum advantage observed for optimization problems on D-
Wave hardware (as far as I am aware).

Cautionary points in the context of optimization (finding minima of classical cost 
functions):

•A Gibbs/thermal state at a fixed temperature will have exponentially decreasing overlap 
with the ground state with increasing system size.  Algorithm is doomed to fail at 
growing system sizes unless the temperature is decreased accordingly [Alb2017].

•Quantum annealers are inherently analog devices.  Implementation errors in the final 
Hamiltonian (for example in the Ising parameters , 

) may mean that the implemented Hamiltonian  has a different 
ground state than the desired Hamiltonian .  These errors must also be scaled down 
as system sizes grow in order to ensure the “right” ground state is reached 
[You2013,Alb2019b].  

{hi → h′ i = hi + δhi}

{Jij → J′ ij = Jij + δJij} H′ 1

H1

A universal lesson though: Identifying and characterizing the noise is critical in order to 
predict its effect on performance, and we should continue to do it for these devices 
[Vuf2020,Nel2021,Nel2022] .

Beating state-of-the-art classical algorithms for optimization is not easy! Whether analog 
hardware can be made useful for classical optimization (real world problems always have 
a finite size!) in-spite of these limitation is not clear and should be investigated.



QAOA vs QA

Empirical/Experimental studies of QAOA [Pag2020,Zho2020] suggest that the 
optimal QAOA angles approximate a smooth curve  


 QAOA at fixed large  approximates a continuous-time (diabatic) evolution.


This connection was made more concrete in Ref. [Bra2021], where it was shown that 
the true optimal protocol is neither QAOA nor continuous-time evolution but a hybrid 
of the two (bang-anneal-bang).


This at least suggests that from the point of view of a heuristic algorithms (note that 
QAOA need not be used as a heuristic algorithm), QA may be a complementary 
approach to QAOA to pursue.  However, learning the optimal annealing schedule 
may not be as easy as learning the optimal QAOA angles. 

→ p

The Quantum Approximate Optimization Algorithm (QAOA) [Far2014] is an 
optimization algorithm for the circuit model.

|ψp⟩ =
p

∏
k=1

e−iβk ∑j σ x
j e−iγkHIsing |ψ0⟩



QAOA vs QA: Experimental Demonstrations

Neutral atom quantum simulators with up to 289 qubits on a square grid 
solving Maximum Independent Set (MIS) problems [Eba2022]

Platform has limited programmability 
of individual 2-qubit couplings, so 
limited to problems like MIS with 

uniform antiferromagnetic couplings

~ 70 µs coherence time, ability to 
optimize annealing schedule to a 

certain extent No comparison to state of the art 
spin glass algorithms like Parallel 

Tempering with Isoenergetic 
cluster moves (PT-ICM) 

[Zhu2015]

Their quantum annealing algorithm 
outperformed their QAOA algorithm

HMIS = − ∑
i

ni + α∑
⟨i, j⟩

ninj , α > 0

ni = |1⟩i⟨1 |



Benchmarking to DateQAO with Non-stoquastic CatalystUsing Quantum Annealers as Quantum Simulators

• Thermal phases: On D-Wave hardware, there have been studies of a (quantum) 
Kosterlitz–Thouless phase transition [Kin2018], (quantum) 3d cubic lattice spin glass 
phase transition [Har2018], (classical) Shastry-Sutherland Ising Model [Kai2020], 
(classical) spin ice [Kin2021a].

• Thermalization: Recent results suggest that D-Wave device may be able to thermalize 
faster than QMC simulations when starting from specific initial states with non-trivial 
winding [Kin2021b]

•Open-System Kibble-Zurek mechanism: On D-Wave hardware at annealing times 
between 1 µs and 2ms, consistent results with open-system Kibble-Zurek predictions on 
the transverse field Ising model with up to 800 qubits [Ban2020].  Results actually 
consistent with spin-Langevin equation [Sub2022].

• Closed-System Kibble-Zurek mechanism: On D-Wave hardware at very short annealing 
times ( ), verification of Kibble-Zurek predictions on the transverse field Ising 
model with up to 2000 qubits [Kin2022].

• Phases of antiferromagnetic transverse field Ising models on square and triangular 
lattices with up to 256 atoms have been studied on neutral atom platforms 
[Sch2021,Eba2021].

≲ 100ns

As I understand it, none of these demonstrations are beyond classical simulation

Quantum annealers can be used more generally to prepare interesting states



Benchmarking to DateQAO with Non-stoquastic CatalystFinal Thoughts

Quantum annealing, while originally formulated in the adiabatic setting, has become an 
umbrella term for more general continuous-time algorithms with an interpolating 
Hamiltonian. It remains a useful generic approach for preparing ground states.

Open question whether the algorithm can provably demonstrate quantum advantages on 
real-world problems, but also whether quantum annealers at some fixed size can be used 
in a setting to solve such problems faster than can be done on classical hardware.

• Passive error suppression [Jor2006,Jia2017,Mar2017,Mar2019]:

• Active error correction [Ata2021]

Scalable quantum computing will require fault tolerant quantum error correction.  Such 
protocols are not yet known for the adiabatic paradigm, but error mitigation strategies 
could improve performance at intermediate sizes.

Adiabatic quantum computing, while out of fashion these days, is a paradigm of quantum 
computing with obvious connections to many areas: Hamiltonian complexity, quantum 
phase transitions, etc.

New programs in Europe and Japan are being pursued to develop coherent quantum 
annealers. The US government (DARPA) expects to have a testbed available for research.


