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Motivation

The “end of Moore’s law” has motivated a search for new approaches for tackling 

hard computational problems

We will focus on NP-optimization problems:

Given an efficiently computable cost function  defined on -bits , 


find the minimizing configuration 
C(x) N x ∈ {0,1}N

x*

x* = arg min
x

C(x)

ex. Quadratic Unconstrained Binary Optimization (QUBO)

ex. Polynomial Unconstrained Binary Optimization (PUBO)

(Sometimes called a higher-order unconstrained binary optimization)

C(x) = ∑
i, j

Qijxixj

C(x) =
p

∑
m=1

am ∏
i∈ℳm

xi



Motivation

The “end of Moore’s law” has motivated a search for new approaches for tackling 

hard computational problems

We will focus on NP-optimization problems:

Given an efficiently computable energy function  defined on  Ising spins , 


find the ground state 
E(s) N s ∈ {−1,1}N

s*

s* = arg min
s

E(s)

ex. Ising (2-body) Hamiltonians

ex. Generalized Ising ( -body) Hamiltoniansp

E(s) = ∑
i, j

Jijsisj + ∑
i

hisi

E(s) = ∑
i1,i2,…,ip

Ji1i2…ipsi1si2…sip + ∑
i1,i2,…,ip−1

Ji1i2…ip−1
si1si2…sip−1

+ … + ∑
i

hisi



Motivation

This includes alternative paradigms of computing, like quantum computing, but also 
dedicated classical hardware for tackling specific problems

The objective is to reduce the constant overhead (the factor ),

 and/or reduce the coefficient of the exponential scaling (the factor )

β
α

We should not expect a single device/implementation to be advantageous for all 
problems. Ideally, we would like a suite of benchmark problems that simulate different 

different aspects of real world problems

For many of these problems, it is not expected for there to exist an efficient algorithm;

 we expect a runtime that scales exponentially with the problem size:

τ ∼ 10αN+β

Today we consider only one problem class



3-regular 3-XORSAT (3R3X)

System of  linear equations modulo 2 for  Boolean variables :N N x

(xi1 + xi2 + xi3) mod 2 = bi ↔ xi1 ⊕ xi2 ⊕ xi3 = bi

xi, bi ∈ {0,1}

We can cast the problem in terms of minimizing a cost function in terms of Ising spin 
variables s = 1 − 2x ∈ {−1,1}N

E(s) = − ∑
i

si1si2si3

All-zero (all-up spin) state is guaranteed to be an optimal configuration with .E(s*) = − N

such that each Boolean variable appears in exactly 3 equations (3-regular)

Without loss of generality, we will take . 

We assume the  equations are independent

bi = 0
N

Our aim is to find the solution to this system of equations



Complexity of 3R3X

The system of linear equations can be solved efficiently (in a time that scales as ), 
however solving the optimization problem is known to take exponential time for heuristic 
algorithms [1,2]

poly(N )

This classical hardness arises from the presence of ‘entropic barriers’ and not energy 
barriers [3].

Exponentially many low-lying local-minima

 energy barriers𝒪(1)

Starting from a random state, it is exponentially unlikely that you will reach the global 
optimum by steepest descent.  “Golf-course” low-energy landscape means searching 
the low energy landscape also takes exponential time.

[1] S. Franz, et al.,” Europhys. Lett. 55, 465 (2001).

[2] F. Ricci-Tersenghi, Science 330, 1639–1640 (2010).

[3] Matteo Bellitti, et al., arXiv:2102.00182



The Good and the Bad of 3R3X

Why we like these instances

Why we don’t like these instances

• Can be constructed with at least one known global optimum solution. 

• Efficient classical algorithm can be used to determine degeneracy of the ground state.

• Degree of each spin is fixed.

• Exponential hardness for heuristic algorithms is manifest even at relatively small 

problem sizes.

• Interaction graph is random, so hardware with a fixed connectivity will not natively run 
the problem.


• Entropic barriers mean that fast repeated runs are more likely a better strategy than 
algorithms that try to perform advanced moves to overcome energy barriers.


• Energy landscape is such that approximate solutions are easy to find. Therefore, this 
may not be a meaningful benchmark for practical world problems.

What you learn from benchmarking using a single problem class will be limited. 

 A suite of problem classes are needed to identify the pros and cons of each 


hardware/algorithm implementation



Measuring Performance

We quantify the computational cost of solving an instance of 3R3X using the time-to-
solution (TTS) metric [4]

Given a heuristic algorithm with a single-run runtime of  and a probability  of finding 
the solution of the -th instance, the total time required to find the solution at least once 
with 0.99 probability is given by: 

tf pi(tf )
i

TTSi(tf ) = tf
log(1 − 0.99)
log(1 − pi(tf ))

For an ensemble of instances, we can consider different quantiles  of the TTS metric for 
a fixed runtime:

q

⟨TTS(tf )⟩q=0.5 = median [TTSi(tf )]

, number of repetitions 

of the algorithm

= R(tf )

[4] T. Rønnow, et al. Science 345, 420–424 (2014).



Optimal TTS

Choose the runtime  (and all other simulation parameters) that minimizes the particular 
quantile of TTS

tf

⟨TTS⟩q=0.5 = min
tf

⟨TTS(tf )⟩q=0.5

The optimum TTS is a balance between running many short repetitions/trials of the 
algorithm and running one long repetition of the algorithm. 
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Parallelization

Independent repetitions can in principle be performed in parallel, i.e. an algorithm 
implemented efficiently on a GPU can use the multi-thread capability to run independent 
trials of the algorithm

We can include this parallelization factor in our TTS calculation by dividing by a factor 
 that accounts for this parallelization.  This is a finite-size correction to the TTS since 

all hardware has limitations (e.g., finite memory), so we expect the degree of parallelism 
to decrease or stay constant with increasing system size.

f(N )

The TTS metric assumes the independent runs of the algorithm are performed serially.
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TTS = 6tf TTS = 2tf
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Quasi-greedy Algorithm

• A spin is of type  if it violates  interaction terms.k ∈ {0,1,2,3} k
Quasi-greedy algorithm [3] is characterized by the choice of ⃗w = (w0, w1, w2, w3)

1
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1 1

1

1

1

1

-1

1 1

1

[3] M. Bellitti, et al., arXiv:2102.00182

k = 0 k = 1

E(s) = − ∑
i

si1si2si3



Quasi-greedy Algorithm

• A spin is of type  if it belongs to  unsatisfied interactions.k ∈ {0,1,2,3} k
Quasi-greedy algorithm [3] is characterized by the choice of ⃗w = (w0, w1, w2, w3)

1

1

-1

-1

1 1

1

1

1

1

1

1 1

-1

[3] M. Bellitti, et al., arXiv:2102.00182

k = 0 k = 3

Flipping a spin of type  gives: k k = 0 → k = 3
k = 1 → k = 2

k = 2 → k = 1
k = 3 → k = 0

E(s) = − ∑
i

si1si2si3



Quasi-greedy Algorithm

• At time step , the fraction of variables that are of type  is given by .

• At each time step, we choose a variable of type  with probability  and 

flip it.

•  guarantees that if the ground state is reached, then the algorithm stops.

• Greedy algorithm (only flip variables that result in a lower energy) corresponds to 




t k fk(t)
k pk(t) ∝ wk fk(t)

w0 = 0

⃗w = (0,0,1,1)

For 3R3X, an optimal choice is close to  [5].  The small value of  
means that the energy only increases when there are no more energy-decreasing spin-
flip-updates.

⃗w = (0,0.054,1,1) w1

Highly optimized implementation of the algorithm on GPUs (SATonGPU) [5] achieves a 
scaling with system size of

⟨TTS⟩q=0.5 ∼ 100.034N

[5] M. Bernaschi, et al., EPL, 133 60005 (2021)



Quantum Adiabatic Optimization

The quantum analogue [6] to simulated annealing [7]

H(t) = − (1 −
t
tf )∑

i

σx
i −

t
tf ∑

i

σz
i1
σz

i2
σz

i3

• At , system is in the ground state of .  

• If system is evolved in accordance with the adiabatic condition

t = 0 H(0)

tf ≫ min
t∈[0,tf ]

Δ(t)−2

then the adiabatic theorem guarantees that the ground state of 3R3X will be reached 
with high probability. Algorithm performance will depend on the scaling of the minimum 
gap along the interpolation.

Estimate of the gap scaling [9], , suggests no quantum speedup for 

this quantum algorithm on this problem class.

min
t∈[0,tf ]

Δ(t) ∼ 100.0348N

[6] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355–5363 (1998).

[7] S. Kirkpatrick, et al., Science 220, 671–680 (1983).

[8] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).

[9] E. Farhi, et al., Phys. Rev. A 86, 052334 (2012).

• Could be quadratically improved to  using a tailored schedule [8].tf ≫ min
t∈[0,tf ]

Δ(t)−1



3-body to  2-body≤

Dedicated hardware often does not natively implement 3-body interactions; we can use 
a gadget with one additional spin that uses 1 and 2-body interactions such that the 
minimizing spin configurations of a 3-body term are encoded into the ground states of 
the gadget [10]

−si1si2si3
−(si1 + si2 + si3) − 2sia

si1

si2

si3 si1

si2

si3

sia

+(si1si2 + si2si3 + si3si1) + 2sia (si1 + si2 + si3)

Ground states  : (si1, si2, si3) (1,1,1), (1, − 1, − 1), (−1,1, − 1), (−1, − 1,1)

[10] I. Hen, Phys. Rev. Applied 12, 011003 (2019)



Our 2-local Problem Instances

• We generate 100 random 3-regular 3-XORSAT instances with  variables and a unique 
solution.


• Each 3-body term is reduced in locality using the gadget; the resulting 2-local 
instances are defined with  variables.

N

n = 2N

For each problem size, we identify the success probability of each instance for each 
solver, calculate the TTS, and identify the optimal TTS.



Parallel Tempering (PT)

Algorithm has two parts [11,12,13]

•  independent Markov-chain Monte Carlo simulations (replicas) evolved for  
sweeps. Each replica is associated with an inverse-temperature from  


• Spin configurations of neighboring temperature replicas are exchanged (satisfying 
detailed balance)

Nβ Nsw

{βi}Nβ

i=1

1

2

3

β1

β2

β3

1

2

3

1

2

3

MC sweeps Replica Swap MC sweeps

1

2

3

Replica Swap

1

3

2

[11] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607–2609 (1986). 

[12] C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface (1991)

[13] K. Hukushima and K. Nemoto, Journal of the Physical Society of Japan 65, 1604–1608 (1996).

• The lowest energy configuration is tracked throughout this process.



Temperature Optimization

The number and distribution of temperatures in parallel tempering should be optimized for 
best performance.  The choice needs to ensure enough of an overlap between the energy 
histograms of neighboring inverse-temperature replicas. Two approaches:

A parallel tempering simulation with a constant swap probability of 0.23 should achieve the 
same scaling as the quasi-greedy algorithm albeit with a higher overhead [3]

[3] M. Bellitti, et al., arXiv:2102.00182.

[14] H. G. Katzgraber, et al., Stat. Mech. P03018 (2006)

[15] A. Kone and D. A. Kofke, J. Chem. Phys. 122, 206101 (2005). 

[16] I. Rozada, et al., Phys. Rev. E 100, 043311 (2019)

• Best performance: Pick distribution to maximize rate of roundtrips performed by each 
replica [14]. Computationally costly since it requires replicas to perform several round 
trips to work, which makes it not very practical when the round trip time is very long.


• Most commonly used: pick distribution such that the probability to swap neighboring 
replicas is constant (pick swap probability to be  0.23 [15])≈

Performance difference between the two approaches varies between different class of 
problem instances [16]: sometimes no difference, sometimes only overhead difference, 
sometimes scaling difference.



Fujitsu’s Digital Annealer Unit (DAU)

• ASIC hardware implementing parallel tempering.

• Tested hardware allows for a total of 8192 spins with programmable local fields and all-

to-all Ising couplings. 

• Limited form of parallelization: 8, fully-connected 1024 spins can be run in parallel.

• The temperature distribution is dynamically adjusted during the first  Monte Carlo 

updates

• Implements a form of “Rejection-free” Monte Carlo updates [17]

105

If properly optimized, we expect the DAU to achieve a similar scaling to optimized PT, 
although the efficient hardware implementation should mean a significantly reduced 
overhead compared to a generic CPU implementation.

[17] E. A. J. F. Peters and G. de With, Phys. Rev. E 85, 026703– (2012).

All spins calculate their 
Metropolis update 

probability in parallel

pi = min(1,e−βΔi)

“Roulette wheel selection”

One spin is randomly selected to be flipped 

according to its relative Metropolis update probability
p1

∑i pi

p2

∑i pi

pn

∑i pi
…

i = 1,…, n



Toshiba’s Simulated Bifurcation Machine (SBM)

A simulation of the classical dynamics of Kerr-nonlinear parametric oscillators [18]

d2

dt2
yi(t) = − (yi(t)2 − p(t) + 1) yi(t) + C hi + ∑

⟨i, j⟩

Jijyj(t)

•  is a continuous variable and is projected to an Ising spin value at the end of the 
evolution depending on whether it is positive or negative.


•  and  are the Ising local fields and couplings of the problem instance

•  is ‘annealed’ from 0 to 1 in increments of  (discretization of the differential 

equation).

• In our benchmarking, we use the implementation on Amazon AWS, which can auto-

adjust the parameter , leaving the time parameters  and  to be optimized.

yi(t)

{hi} {Jij}
p(t) Δt

C Δt tf

We expect the simulation to give the same algorithm performance in terms of scaling with 
system size as a physical device implementing the same classical dynamics, but a 
physical device may have a reduced overhead.

[18] H. Goto, Journal of the Physical Society of Japan 88, 061015 (2019).



D-Wave Advantage (DWA)

Hardware based on superconducting circuits implementing quantum annealing
Low energy description:

H(s) = − A(s)∑
i

σx
i + B(s) ∑

i

hiσz
i + ∑

⟨i, j⟩

Jijσz
i σz

j

How is this different from the quantum adiabatic optimization algorithm?

• The evolution need not be adiabatic

• The evolution is not restricted to be a closed system evolution.  In fact, we know that 

the output statistics of the D-Wave quantum annealers are dominated by open 
quantum system effects. 

Starting from the thermal state of , system is evolved from  with  to 
 with .

H(0) s = 0 A(0) ≫ B(0)
s = 1 B(1) ≫ A(1)



D-Wave’s Disadvantage

Connectivity graph restricted by hardware connectivity; to implement all-to-all 
connectivity requires a minor-embedding

si sj

si sj
Jij

embedMinor

Effective system size is larger than the actual problem instance, making it even more 
susceptible to noise (both thermal and implementation errors).


Introduces yet another optimization parameter: the embedding chain strength . 
Limited interaction strength range means optimizing this parameter can be problematic.

JME

si si si si
JijJMEJMEJMEJME



Recap

• Quasi-greedy algorithm (SATonGPU): Will operate on the 3-body problem (uses 
 variables). Highly efficient implementation using GPUs.


• Quantum adiabatic optimization: Results known for the 3-body problem.  No physical 
device to implement the algorithm.


• Digital Annealer Unit (DAU): Will operate on the 2-body problem. Includes temperature 
optimization.


• Parallel tempering (PT): Will operate on the 2-body problem.  To differentiate from the 
DAU, will be run on a single CPU core and not include temperature optimization.


• Simulated Bifurcation Machine (SBM): Will operate on the 2-body problem.  Amazon 
AWS implementation uses 8 GPUs.


• D-Wave Advantage (DWA): Will operate on the 2-body problem.  Requires a minor 
embedding onto the physical connectivity graph.

N = n /2



Results [19]

Does not include  
programming, 

readout, or access 
overhead

Difference in overhead due to 
massive parallelization, f > 105

Difference in overhead due to 
special purpose hardware 

efficiency

[19] M. Kowalsky, TA, I. Hen, and D. A. Lidar, arXiv:2103.08464



Results [19]

Measure exponential scaling as 10αn

α = 0.0248(2)

α = 0.0185(4)

α = 0.0217(6)

α = 0.08(4)

α = 0.0171(7)

[19] M. Kowalsky, TA, I. Hen, and D. A. Lidar, arXiv:2103.08464



Conclusions

• The limited connectivity, binary couplings, and entropic barriers of 3-regular 3-XORSAT 
mean that an extremely efficient implementation of the quasi-greedy on GPUs is 
possible.  This approach will not generalize to other problem classes.


• DAU achieves the best scaling and best overhead for our suite of algorithms that 
worked on the 2-body problem.  It’s ability to tackle generic QUBO’s make it an 
interesting solver, especially if it can be scaled to larger sizes and possibly include 
higher order interaction terms..  It would be interesting to study how it performs on 
other problem classes.


• The difference between the DAU and vanilla PT shows how important it is to optimize 
the temperature distribution.


• The SBM results suggests the a physical classical bifurcation machine will not be 
competitive in terms of scaling for this problem class.


• For the DWA, the process of minor embedding and the inherent noise on the device 
make it a poor choice for solving this class of problems.   In principle, the quantum 
adiabatic optimization algorithm on the 3-body problem should do better, but we do not 
expect a quantum speedup for this class of problems.



Final Remarks

Identifying the optimum TTS of a quantile scaling with problem size of an algorithm 
requires identifying the optimal parameters of the algorithm that minimize the TTS for that 
quantile.  In principle, this is a one-time cost, but this initial cost can be very large. This is 
the kind of approach that is needed when we are interested in identifying algorithmic 
improvements in terms of asymptotic scalings. This is what we did in this study.

Instead, you might be more interested in finding reasonably good simulation parameters 
quickly and getting reasonable results in a short time for as wide a range of problem 
classes as possible.  In this kind of situation, asymptotic scaling is probably not your 
most pressing concern.

These considerations suggest a different kind of benchmarking study; for example, the 
user specifies only the problem instances and the total allowed time; all simulation 
parameters must be optimized by the algorithm/hardware as well as solve (as many?) 
instances from the problems classes as best as possible within the specified total time.  
A score is then given based on the quality of solutions returned given the total time used.  
(Or use the procedure of SAT competitions?)

But this might not be very practical; for example, if you want to provide your optimization 
algorithm as a Cloud service, you might expect to receive a wide range of problem 
classes, and you won’t have the time to find the optimal simulation parameters for each 
problem class.


