
Benchmarking (Some) Optimization
Hardware and Algorithms

Using 3-Regular 3-XORSAT
Tameem Albash @ University of New Mexico

19/20 July 2021

Based on arXiv:2103.08464 with

 M. Kowalsky, I. Hen, and D. A. Lidar

Motivation

The “end of Moore’s law” has motivated a search for new approaches for tackling

hard computational problems

We will focus on NP-optimization problems:

Given an efficiently computable cost function defined on -bits ,

find the minimizing configuration
C(x) N x ∈ {0,1}N

x*

x* = arg min
x

C(x)

ex. Quadratic Unconstrained Binary Optimization (QUBO)

ex. Polynomial Unconstrained Binary Optimization (PUBO)

(Sometimes called a higher-order unconstrained binary optimization)

C(x) = ∑
i, j

Qijxixj

C(x) =
p

∑
m=1

am ∏
i∈ℳm

xi

Motivation

The “end of Moore’s law” has motivated a search for new approaches for tackling

hard computational problems

We will focus on NP-optimization problems:

Given an efficiently computable energy function defined on Ising spins ,

find the ground state
E(s) N s ∈ {−1,1}N

s*

s* = arg min
s

E(s)

ex. Ising (2-body) Hamiltonians

ex. Generalized Ising (-body) Hamiltoniansp

E(s) = ∑
i, j

Jijsisj + ∑
i

hisi

E(s) = ∑
i1,i2,…,ip

Ji1i2…ipsi1si2…sip + ∑
i1,i2,…,ip−1

Ji1i2…ip−1
si1si2…sip−1

+ … + ∑
i

hisi

Motivation

This includes alternative paradigms of computing, like quantum computing, but also
dedicated classical hardware for tackling specific problems

The objective is to reduce the constant overhead (the factor),

 and/or reduce the coefficient of the exponential scaling (the factor)

β
α

We should not expect a single device/implementation to be advantageous for all
problems. Ideally, we would like a suite of benchmark problems that simulate different

different aspects of real world problems

For many of these problems, it is not expected for there to exist an efficient algorithm;

 we expect a runtime that scales exponentially with the problem size:

τ ∼ 10αN+β

Today we consider only one problem class

3-regular 3-XORSAT (3R3X)

System of linear equations modulo 2 for Boolean variables :N N x

(xi1 + xi2 + xi3) mod 2 = bi ↔ xi1 ⊕ xi2 ⊕ xi3 = bi

xi, bi ∈ {0,1}

We can cast the problem in terms of minimizing a cost function in terms of Ising spin
variables s = 1 − 2x ∈ {−1,1}N

E(s) = − ∑
i

si1si2si3

All-zero (all-up spin) state is guaranteed to be an optimal configuration with .E(s*) = − N

such that each Boolean variable appears in exactly 3 equations (3-regular)

Without loss of generality, we will take .

We assume the equations are independent

bi = 0
N

Our aim is to find the solution to this system of equations

Complexity of 3R3X

The system of linear equations can be solved efficiently (in a time that scales as),
however solving the optimization problem is known to take exponential time for heuristic
algorithms [1,2]

poly(N)

This classical hardness arises from the presence of ‘entropic barriers’ and not energy
barriers [3].

Exponentially many low-lying local-minima

 energy barriers𝒪(1)

Starting from a random state, it is exponentially unlikely that you will reach the global
optimum by steepest descent. “Golf-course” low-energy landscape means searching
the low energy landscape also takes exponential time.

[1] S. Franz, et al.,” Europhys. Lett. 55, 465 (2001).

[2] F. Ricci-Tersenghi, Science 330, 1639–1640 (2010).

[3] Matteo Bellitti, et al., arXiv:2102.00182

The Good and the Bad of 3R3X

Why we like these instances

Why we don’t like these instances

• Can be constructed with at least one known global optimum solution.

• Efficient classical algorithm can be used to determine degeneracy of the ground state.

• Degree of each spin is fixed.

• Exponential hardness for heuristic algorithms is manifest even at relatively small

problem sizes.

• Interaction graph is random, so hardware with a fixed connectivity will not natively run
the problem.

• Entropic barriers mean that fast repeated runs are more likely a better strategy than
algorithms that try to perform advanced moves to overcome energy barriers.

• Energy landscape is such that approximate solutions are easy to find. Therefore, this
may not be a meaningful benchmark for practical world problems.

What you learn from benchmarking using a single problem class will be limited.

 A suite of problem classes are needed to identify the pros and cons of each

hardware/algorithm implementation

Measuring Performance

We quantify the computational cost of solving an instance of 3R3X using the time-to-
solution (TTS) metric [4]

Given a heuristic algorithm with a single-run runtime of and a probability of finding
the solution of the -th instance, the total time required to find the solution at least once
with 0.99 probability is given by:

tf pi(tf)
i

TTSi(tf) = tf
log(1 − 0.99)
log(1 − pi(tf))

For an ensemble of instances, we can consider different quantiles of the TTS metric for
a fixed runtime:

q

⟨TTS(tf)⟩q=0.5 = median [TTSi(tf)]

, number of repetitions

of the algorithm

= R(tf)

[4] T. Rønnow, et al. Science 345, 420–424 (2014).

Optimal TTS

Choose the runtime (and all other simulation parameters) that minimizes the particular
quantile of TTS

tf

⟨TTS⟩q=0.5 = min
tf

⟨TTS(tf)⟩q=0.5

The optimum TTS is a balance between running many short repetitions/trials of the
algorithm and running one long repetition of the algorithm.

12.0 12.5 13.0 13.5 14.0
22.6

22.8

23.0

23.2

23.4

23.6

23.8

log(tf)

lo
g(
M
ed
ia
n
TT
S
)

 value that minimizes TTStf

2.1 2.2 2.3 2.4 2.5 2.6 2.7
20

21

22

23

24

log(L)

lo
g(
M
ed
ia
n
TT
S
m
in
)

log()N

lo
g(

)
⟨T

TS
(t f

)⟩
q

lo
g(

)
⟨T

TS
⟩ q

Parallelization

Independent repetitions can in principle be performed in parallel, i.e. an algorithm
implemented efficiently on a GPU can use the multi-thread capability to run independent
trials of the algorithm

We can include this parallelization factor in our TTS calculation by dividing by a factor
 that accounts for this parallelization. This is a finite-size correction to the TTS since

all hardware has limitations (e.g., finite memory), so we expect the degree of parallelism
to decrease or stay constant with increasing system size.

f(N)

The TTS metric assumes the independent runs of the algorithm are performed serially.

1 2 3 4

1

2

3

55 6

4

6

TTS = 6tf TTS = 2tf

tf

versus

Quasi-greedy Algorithm

• A spin is of type if it violates interaction terms.k ∈ {0,1,2,3} k
Quasi-greedy algorithm [3] is characterized by the choice of ⃗w = (w0, w1, w2, w3)

1

1

1

1

1 1

1

1

1

1

-1

1 1

1

[3] M. Bellitti, et al., arXiv:2102.00182

k = 0 k = 1

E(s) = − ∑
i

si1si2si3

Quasi-greedy Algorithm

• A spin is of type if it belongs to unsatisfied interactions.k ∈ {0,1,2,3} k
Quasi-greedy algorithm [3] is characterized by the choice of ⃗w = (w0, w1, w2, w3)

1

1

-1

-1

1 1

1

1

1

1

1

1 1

-1

[3] M. Bellitti, et al., arXiv:2102.00182

k = 0 k = 3

Flipping a spin of type gives: k k = 0 → k = 3
k = 1 → k = 2

k = 2 → k = 1
k = 3 → k = 0

E(s) = − ∑
i

si1si2si3

Quasi-greedy Algorithm

• At time step , the fraction of variables that are of type is given by .

• At each time step, we choose a variable of type with probability and

flip it.

• guarantees that if the ground state is reached, then the algorithm stops.

• Greedy algorithm (only flip variables that result in a lower energy) corresponds to

t k fk(t)
k pk(t) ∝ wk fk(t)

w0 = 0

⃗w = (0,0,1,1)

For 3R3X, an optimal choice is close to [5]. The small value of
means that the energy only increases when there are no more energy-decreasing spin-
flip-updates.

⃗w = (0,0.054,1,1) w1

Highly optimized implementation of the algorithm on GPUs (SATonGPU) [5] achieves a
scaling with system size of

⟨TTS⟩q=0.5 ∼ 100.034N

[5] M. Bernaschi, et al., EPL, 133 60005 (2021)

Quantum Adiabatic Optimization

The quantum analogue [6] to simulated annealing [7]

H(t) = − (1 −
t
tf)∑

i

σx
i −

t
tf ∑

i

σz
i1
σz

i2
σz

i3

• At , system is in the ground state of .

• If system is evolved in accordance with the adiabatic condition

t = 0 H(0)

tf ≫ min
t∈[0,tf]

Δ(t)−2

then the adiabatic theorem guarantees that the ground state of 3R3X will be reached
with high probability. Algorithm performance will depend on the scaling of the minimum
gap along the interpolation.

Estimate of the gap scaling [9], , suggests no quantum speedup for

this quantum algorithm on this problem class.

min
t∈[0,tf]

Δ(t) ∼ 100.0348N

[6] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355–5363 (1998).

[7] S. Kirkpatrick, et al., Science 220, 671–680 (1983).

[8] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).

[9] E. Farhi, et al., Phys. Rev. A 86, 052334 (2012).

• Could be quadratically improved to using a tailored schedule [8].tf ≫ min
t∈[0,tf]

Δ(t)−1

3-body to 2-body≤

Dedicated hardware often does not natively implement 3-body interactions; we can use
a gadget with one additional spin that uses 1 and 2-body interactions such that the
minimizing spin configurations of a 3-body term are encoded into the ground states of
the gadget [10]

−si1si2si3
−(si1 + si2 + si3) − 2sia

si1

si2

si3 si1

si2

si3

sia

+(si1si2 + si2si3 + si3si1) + 2sia (si1 + si2 + si3)

Ground states : (si1, si2, si3) (1,1,1), (1, − 1, − 1), (−1,1, − 1), (−1, − 1,1)

[10] I. Hen, Phys. Rev. Applied 12, 011003 (2019)

Our 2-local Problem Instances

• We generate 100 random 3-regular 3-XORSAT instances with variables and a unique
solution.

• Each 3-body term is reduced in locality using the gadget; the resulting 2-local
instances are defined with variables.

N

n = 2N

For each problem size, we identify the success probability of each instance for each
solver, calculate the TTS, and identify the optimal TTS.

Parallel Tempering (PT)

Algorithm has two parts [11,12,13]

• independent Markov-chain Monte Carlo simulations (replicas) evolved for
sweeps. Each replica is associated with an inverse-temperature from

• Spin configurations of neighboring temperature replicas are exchanged (satisfying
detailed balance)

Nβ Nsw

{βi}Nβ

i=1

1

2

3

β1

β2

β3

1

2

3

1

2

3

MC sweeps Replica Swap MC sweeps

1

2

3

Replica Swap

1

3

2

[11] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607–2609 (1986).

[12] C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface (1991)

[13] K. Hukushima and K. Nemoto, Journal of the Physical Society of Japan 65, 1604–1608 (1996).

• The lowest energy configuration is tracked throughout this process.

Temperature Optimization

The number and distribution of temperatures in parallel tempering should be optimized for
best performance. The choice needs to ensure enough of an overlap between the energy
histograms of neighboring inverse-temperature replicas. Two approaches:

A parallel tempering simulation with a constant swap probability of 0.23 should achieve the
same scaling as the quasi-greedy algorithm albeit with a higher overhead [3]

[3] M. Bellitti, et al., arXiv:2102.00182.

[14] H. G. Katzgraber, et al., Stat. Mech. P03018 (2006)

[15] A. Kone and D. A. Kofke, J. Chem. Phys. 122, 206101 (2005).

[16] I. Rozada, et al., Phys. Rev. E 100, 043311 (2019)

• Best performance: Pick distribution to maximize rate of roundtrips performed by each
replica [14]. Computationally costly since it requires replicas to perform several round
trips to work, which makes it not very practical when the round trip time is very long.

• Most commonly used: pick distribution such that the probability to swap neighboring
replicas is constant (pick swap probability to be 0.23 [15])≈

Performance difference between the two approaches varies between different class of
problem instances [16]: sometimes no difference, sometimes only overhead difference,
sometimes scaling difference.

Fujitsu’s Digital Annealer Unit (DAU)

• ASIC hardware implementing parallel tempering.

• Tested hardware allows for a total of 8192 spins with programmable local fields and all-

to-all Ising couplings.

• Limited form of parallelization: 8, fully-connected 1024 spins can be run in parallel.

• The temperature distribution is dynamically adjusted during the first Monte Carlo

updates

• Implements a form of “Rejection-free” Monte Carlo updates [17]

105

If properly optimized, we expect the DAU to achieve a similar scaling to optimized PT,
although the efficient hardware implementation should mean a significantly reduced
overhead compared to a generic CPU implementation.

[17] E. A. J. F. Peters and G. de With, Phys. Rev. E 85, 026703– (2012).

All spins calculate their
Metropolis update

probability in parallel

pi = min(1,e−βΔi)

“Roulette wheel selection”

One spin is randomly selected to be flipped

according to its relative Metropolis update probability
p1

∑i pi

p2

∑i pi

pn

∑i pi
…

i = 1,…, n

Toshiba’s Simulated Bifurcation Machine (SBM)

A simulation of the classical dynamics of Kerr-nonlinear parametric oscillators [18]

d2

dt2
yi(t) = − (yi(t)2 − p(t) + 1) yi(t) + C hi + ∑

⟨i, j⟩

Jijyj(t)

• is a continuous variable and is projected to an Ising spin value at the end of the
evolution depending on whether it is positive or negative.

• and are the Ising local fields and couplings of the problem instance

• is ‘annealed’ from 0 to 1 in increments of (discretization of the differential

equation).

• In our benchmarking, we use the implementation on Amazon AWS, which can auto-

adjust the parameter , leaving the time parameters and to be optimized.

yi(t)

{hi} {Jij}
p(t) Δt

C Δt tf

We expect the simulation to give the same algorithm performance in terms of scaling with
system size as a physical device implementing the same classical dynamics, but a
physical device may have a reduced overhead.

[18] H. Goto, Journal of the Physical Society of Japan 88, 061015 (2019).

D-Wave Advantage (DWA)

Hardware based on superconducting circuits implementing quantum annealing
Low energy description:

H(s) = − A(s)∑
i

σx
i + B(s) ∑

i

hiσz
i + ∑

⟨i, j⟩

Jijσz
i σz

j

How is this different from the quantum adiabatic optimization algorithm?

• The evolution need not be adiabatic

• The evolution is not restricted to be a closed system evolution. In fact, we know that

the output statistics of the D-Wave quantum annealers are dominated by open
quantum system effects.

Starting from the thermal state of , system is evolved from with to
 with .

H(0) s = 0 A(0) ≫ B(0)
s = 1 B(1) ≫ A(1)

D-Wave’s Disadvantage

Connectivity graph restricted by hardware connectivity; to implement all-to-all
connectivity requires a minor-embedding

si sj

si sj
Jij

embedMinor

Effective system size is larger than the actual problem instance, making it even more
susceptible to noise (both thermal and implementation errors).

Introduces yet another optimization parameter: the embedding chain strength .
Limited interaction strength range means optimizing this parameter can be problematic.

JME

si si si si
JijJMEJMEJMEJME

Recap

• Quasi-greedy algorithm (SATonGPU): Will operate on the 3-body problem (uses
 variables). Highly efficient implementation using GPUs.

• Quantum adiabatic optimization: Results known for the 3-body problem. No physical
device to implement the algorithm.

• Digital Annealer Unit (DAU): Will operate on the 2-body problem. Includes temperature
optimization.

• Parallel tempering (PT): Will operate on the 2-body problem. To differentiate from the
DAU, will be run on a single CPU core and not include temperature optimization.

• Simulated Bifurcation Machine (SBM): Will operate on the 2-body problem. Amazon
AWS implementation uses 8 GPUs.

• D-Wave Advantage (DWA): Will operate on the 2-body problem. Requires a minor
embedding onto the physical connectivity graph.

N = n /2

Results [19]

Does not include
programming,

readout, or access
overhead

Difference in overhead due to
massive parallelization, f > 105

Difference in overhead due to
special purpose hardware

efficiency

[19] M. Kowalsky, TA, I. Hen, and D. A. Lidar, arXiv:2103.08464

Results [19]

Measure exponential scaling as 10αn

α = 0.0248(2)

α = 0.0185(4)

α = 0.0217(6)

α = 0.08(4)

α = 0.0171(7)

[19] M. Kowalsky, TA, I. Hen, and D. A. Lidar, arXiv:2103.08464

Conclusions

• The limited connectivity, binary couplings, and entropic barriers of 3-regular 3-XORSAT
mean that an extremely efficient implementation of the quasi-greedy on GPUs is
possible. This approach will not generalize to other problem classes.

• DAU achieves the best scaling and best overhead for our suite of algorithms that
worked on the 2-body problem. It’s ability to tackle generic QUBO’s make it an
interesting solver, especially if it can be scaled to larger sizes and possibly include
higher order interaction terms.. It would be interesting to study how it performs on
other problem classes.

• The difference between the DAU and vanilla PT shows how important it is to optimize
the temperature distribution.

• The SBM results suggests the a physical classical bifurcation machine will not be
competitive in terms of scaling for this problem class.

• For the DWA, the process of minor embedding and the inherent noise on the device
make it a poor choice for solving this class of problems. In principle, the quantum
adiabatic optimization algorithm on the 3-body problem should do better, but we do not
expect a quantum speedup for this class of problems.

Final Remarks

Identifying the optimum TTS of a quantile scaling with problem size of an algorithm
requires identifying the optimal parameters of the algorithm that minimize the TTS for that
quantile. In principle, this is a one-time cost, but this initial cost can be very large. This is
the kind of approach that is needed when we are interested in identifying algorithmic
improvements in terms of asymptotic scalings. This is what we did in this study.

Instead, you might be more interested in finding reasonably good simulation parameters
quickly and getting reasonable results in a short time for as wide a range of problem
classes as possible. In this kind of situation, asymptotic scaling is probably not your
most pressing concern.

These considerations suggest a different kind of benchmarking study; for example, the
user specifies only the problem instances and the total allowed time; all simulation
parameters must be optimized by the algorithm/hardware as well as solve (as many?)
instances from the problems classes as best as possible within the specified total time.
A score is then given based on the quality of solutions returned given the total time used.
(Or use the procedure of SAT competitions?)

But this might not be very practical; for example, if you want to provide your optimization
algorithm as a Cloud service, you might expect to receive a wide range of problem
classes, and you won’t have the time to find the optimal simulation parameters for each
problem class.

