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Abstract

Clostridium perfringens is ubiquitous in the environment and causes diseases in man and animals, with syndromes ranging from

enteritis, enterotoxemia, and sudden death to food poisoning and gas gangrene. Understanding the epidemiology of these infections

and of the evolution of virulence in C. perfringens necessitate an efficient, time and cost effective strain typing method. Multiple-

locus variable-number tandem repeat analysis (MLVA) has been applied to typing of other pathogens and we describe here the

development of a MLVA scheme for C. perfringens. We characterized five variable tandem repeat (VNTR) loci, four of which are

contained within protein encoding genes and screened 112 C. perfringens isolates to evaluate typability, reproducibility, and

discriminatory power of the scheme. All the isolates were assigned a MLVA genotype and the technique has excellent

reproducibility, with a numerical index of discrimination for the five VNTR loci of 0.995. Thus MLVA is an efficient tool for C.

perfringens strain typing, and being PCR based makes it rapid, easy, and cost effective. In addition, it can be employed in

epidemiological, ecological, and evolutionary investigations of the organism.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Clostridium perfringens is ubiquitous in the environ-
ment and is part of the normal intestinal flora in man
and animals [1–3]. Toxin types A-E are distinguished by
their production of one or more so-called major toxins
(alpha, beta, epsilon, and iota) [3]. All types of the
organism are implicated in human and domestic animal
diseases [3–13].

A useful method of strain typing would facilitate
source tracking, development of strategies for preven-
tion and control, and study of the organism’s eco-
logy [14] and evolution. Various techniques descri-
bed include serotyping [15,16], bacteriocin typing
[17–23], phage typing [24], plasmid profiling [20,25–27],
e front matter r 2005 Elsevier Ltd. All rights reserved.
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multilocus enzyme electrophoresis (MLEE) [14,28],
ribotyping [20,29], amplified fragment length poly-
morphism (AFLP) [30,31], and macrorestriction
with pulsed field gel electrophoresis (PFGE) [29,32,33].
Many of these methods are highly discriminatory,
but have insufficient typability, or are time- or cost-
ineffective.

Multiple-locus variable-number tandem repeat ana-
lysis (MLVA) is more commonly used for strain
typing of pathogenic microorganisms [34–50]. The
method is based upon PCR amplification of vari-
able tandem repeats (VNTRs), which are polymorphic
DNA segments, from multiple genomic loci [51].
Molecular data generated by this method can be
used for strain typing, population genetics studies
[37,52–54] and as a source of the phylogenetic signal
[37,38,45,54,55].

In this paper, we describe the development and
application of a MLVA technique for C. perfringens.

www.elsevier.com/locate/anaerobe
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2. Materials and methods

2.1. Clostridium perfringens isolates and PCR template

preparation

C. perfringens isolates (Table 1) were cultivated on
brain heart infusion agar (Difco) supplemented with 5%
bovine blood and 0.05% L-Cysteine, incubated over-
night at 37 1C in an atmosphere of 80:20 H2:CO2.
Several colonies suspended in 150 mL sterile HPLC-
grade water were heated at 100 1C for 10 min. The
mixture was clarified by centrifugation (13, 623g, 5min)
and 10 mL of 10-fold diluted (with sterile HPLC-grade
water) supernatant was used as template for PCR
reactions.

Evaluation of VNTR loci for polymorphism was
performed initially on 10 strains (Table 1) and a further
102 strains were used to evaluate the technique. Isolates
were from our collection, which consists mainly of
North American field strains submitted for genotyping
over a period of 15 years. The strains represent the five
toxin types, irrespective of host species of origin, and
ephemeral clones [54,56] likely to be of a single MLVA
genotype were avoided when possible. Reproducibility
of the technique was tested by screening 15 strains
chosen at random.

2.2. Sequence search and primer(s) design

The C. perfringens ATCC 13124 unfinished genome
sequence was obtained from The Institute for Genomic
Research (TIGR) and that of C. perfringens plasmid
(pCP13, GenBank accession no. AP003515) [57] from
GenBank. Potential VNTR loci were identified using the
standalone version of tandem repeat finder v 3.21 (TRF)
[58] and tandem repeats database (version 2.09, http://
tandem.bu.edu/cgi-bin/trdb/trdb.exe) was utilized to
calculate and visualize the distribution of repeats.
Parameters for repeat search included 2 matches, 3
mismatches, and 5 indels for pattern alignment, with 70
as the minimum alignment score and a maximum array
size of 1000 bp. The plasmid sequence was searched
according to the same parameters, but the minimum
alignment score was 50.

Forward and reverse primers (Table 2) were designed
using Primer3 software [59]. Choice of VNTR loci was
by use of Nei’s diversity index (Di, otherwise known as
polymorphism index) [41,44,60], and the number of loci
required for the scheme was based upon the number of
MLVA genotypes they resolved and on the value of the
numerical index of discrimination for the method (D)
[14,61]. MLVA loci (Table 3) were designated as
previously described [40,44].

BLASTX and BLASTN algorithms were used for
database similarity search [62,63] of the C. perfringens

strain 13 genomic sequence and of other bacterial
sequences in the NCBI database, using the default
parameters with the low complexity filter turned-off.

2.3. PCR and VNTR analysis

Each 50 mL PCR reaction mixture contained 50 pmol
of each primer (Sigma Genosys) and 5 U of Taq DNA
polymerase in storage buffer A (Promega). The supplied
Taq buffer and the four dNTPs were added to a final
concentration of 1X and of 0.2 mM, respectively. CP6
and CP13 were multiplexed in one reaction while the
remaining loci were done individually. PCR amplifica-
tion consisted of a hot start (95 1C, 3 min), followed by
35 cycles of denaturing (95 1C, 1 min), annealing (50 1C,
1 min), extension (72 1C, 1 min), and a final extension
(72 1C, 5 min). PCR products were separated by
electrophoresis in a 3% (wt/vol) agarose gel (GENE-
Mate) in TAE buffer at 5V cm�1, with size standards
(100 bp DNA ladder, New England Biolabs) in every
fourth lane (Fig. 1). Gels were visualized by UV
transillumination, and photographs were digitized.
Positive (JGS 1842) and negative (water) controls were
run with each experiment. All negative occurrences for
each VNTR locus were repeated after 2 months to
exclude any human or pipetting errors.

2.4. Data analysis

Digital images were imported into GelCompar II
software v 3.5 (Applied Maths). Band matching was
initially performed with arbitrary values for optimiza-
tion (1%) and position tolerance (1%), and calcu-
lation of optimal values for these parameters, in each of
the four VNTR experiments, was based upon the
characteristics of resulting major clusters. VNTRs
data were concatenated into a single character table
and each band class of a unique molecular size
represented an allele. The similarity matrix was calcu-
lated using Dice coefficient [64] and the phylogenetic
tree was generated using the neighbor-joining (NJ)
algorithm [65]. The robustness of the tree and tree
clusters was tested by cophenetic correlation imple-
mented in GelCompar software. Clostridium difficile

JGS 370 was used as an out-group to predict the root
of the tree.
3. Results and discussion

3.1. Identification of polymorphic VNTR loci

VNTRs are essentially minisatellites, and though
many are polymorphic, others do not show any
variation within a population [41]. Le Flèche et al.
(2001) found significant correlation between minisatel-
lite polymorphism and both the array length and GC

http://tandem.bu.edu/cgi-bin/trdb/trdb.exe
http://tandem.bu.edu/cgi-bin/trdb/trdb.exe
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Table 1

C. perfringens isolates used in this study

JGS # Genotype Species of origin Disease

JGS 1501 A Avian Necrotic enteritis

JGS 1521 A Avian Necrotic enteritis

JGS 1620 A Avian Unavailable

JGS 1657a A Avian/chicken Unavailable

JGS 1677 A Avian Unavailable

JGS 4042 A Avian/western Bluebird Necrotic enteritis

JGS 4066 A Avian/chicken Necrotic enteritis

JGS 4059a A Avian/chicken Necrotic enteritis

JGS 1004 AE Human Unavailable

JGS 1292 AE Human Unavailable

JGS 1612 A Human Feces

JGS 1711 AE Human Unavailable

JGS 1719 AE Human Unavailable

JGS 1313 A Canine Intestine/small

JGS 1320 A Canine Reproductive tract

JGS 1338 A Canine Conjunctiva

JGS 1357 A Canine Chronic colitis

JGS 1363 A Canine Enteritis

JGS 1413a AE Canine Enteritis

JGS 1414a AE Canine Enteritis

JGS 4032 AE Canine Unavailable

JGS 1533a A Bovine Unavailable

JGS 1693 A Bovine Enteritis

JGS 1703 A Bovine Enteritis

JGS 1736 A Bovine Enteritis

JGS 1742 A Bovine Enteritis

JGS 1771 A Bovine Enteritis

JGS 1796 A Bovine Enteritis/diarrhea

JGS 1825 A Bovine Enteritis/diarrhea

JGS 1826 A Bovine Enteritis/diarrhea

JGS 1853 A Bovine Sudden death

JGS 1869a A Bovine Enteritis

JGS 1892 A Bovine Sudden death

JGS 4054a A Bovine Unavailable

JGS 4080a A Bovine Septicemia/toxemia

JGS 1013 A Cervidae/deer Unavailable

JGS 1243 A Cervidae/white tailed deer Lactic acidosis

JGS 1323 A Cervidae/deer Caecum

JGS 1549 A Cervidae/elk Unavailable

JGS 1622 A Cervidae Unavailable

JGS 1665 A Cervidae/deer Hemorrhagic enteritis

JGS 1739 A Cervidae/deer Unavailable

JGS 1791 A Cervidae/deer Unavailable

JGS 1805 A Cervidae Unavailable

JGS 4006 A Cervidae Unavailable

JGS 4119 A Cervidae/Caribou Diarrhea

JGS 1842a A Equine Hemorrhagic colitis

JGS 4099a A Equine Diarrhea

JGS 4151 A (strain 13) — —

JGS 4175 A (ATCC13124) — —

JGS 1118 B Ovine Unavailable

JGS 1984 B Unavailable Unavailable

JGS 1015 C Bovine Unavailable

JGS 1022 CE Canine/greyhound Food

JGS 1070 C Porcine Enteritis

JGS 1076 C Porcine Enteritis

JGS 1090 C Porcine Unavailable

JGS 1142 C Bovine Acute enteritis

JGS 1164 C Bovine Enteritis

JGS 1460 C Porcine Unavailable

JGS 1475 C Porcine Unavailable

JGS 1495 C Porcine Unavailable

Y.S. Sawires, J.G. Songer / Anaerobe 11 (2005) 262–272264
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Table 1 (continued )

JGS # Genotype Species of origin Disease

JGS 1504 C Porcine Necrotic enteritis

JGS 1527 C Porcine Unavailable

JGS 1543 C Porcine Unavailable

JGS 1544 C Porcine Unavailable

JGS 1564 C Porcine Unavailable

JGS 1565 C Equine Unavailable

JGS 1640 C Porcine Unavailable

JGS 1659 C Porcine Enteritis/diarrhea

JGS 1696 C Unavailable Unavailable

JGS 1706 C Unavailable Unavailable

JGS 1182 D Ovine Sudden death

JGS 1240 D Ovine Bronchopneumonia

JGS 1458 D Ovine Unavailable

JGS 1551 D Ovine Unavailable

JGS 1558 D Caprine Diarrhea

JGS 1705 D Ovine Unavailable

JGS 1721 D Ovine Enteritis

JGS 1768 D Unavailable Unavailable

JGS 1841 D Unavailable Unavailable

JGS 1902 DE Ovine Enteritis

JGS 1927 D Seed Culture Unavailable

JGS 1941 D Caprine Unavailable

JGS 1942 D Caprine Sudden death

JGS 1944 D Caprine Enterotoxemia

JGS 1945 D Caprine Diarrhea

JGS 4105 D Ovine Sudden death

JGS 4117 D Unavailable Unavailable

JGS 4138 DE Caprine Sudden death

JGS 4152 DE Ovine Pulpy kidney disease

JGS 4158 DE Caprine Enteritis/septicemia

JGS 1478 EE Bovine Enteritis

JGS 1482 EE Bovine Enteritis

JGS 1496 EE Bovine Enteritis

JGS 1499 EE Bovine Enteritis

JGS 1506 EE Bovine Enteritis

JGS 1510 EE Bovine Enteritis

JGS 1511 EE Bovine Enteritis

JGS 1547 EE Bovine Enteritis

JGS 1553 EE Bovine Enteritis

JGS 1792 EE Bovine Enteritis

JGS 1884 EE Bovine Enteritis

JGS 1901 EE Bovine Enteritis

JGS 1903 EE Bovine Enteritis

JGS 1943 EE Bovine Enteritis

JGS 1975 EE Bovine Enteritis

JGS 1985 EE Bovine Enteritis

JGS 1986 EE Bovine Enteritis

JGS 1987 EE Bovine Enteritis

JGS 4071 EE Bovine Enteritis

JGS 4154 EE Bovine Enteritis

aIsolates used for initial screening of VNTR loci.
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content in B. anthracis, while examination of Y. pestis

revealed strong correlation with homogeneity of repeats.
However, no algorithm can yet predict minisatellite
polymorphism efficiently in bacterial sequences [66]. We
chose repeat search parameters to reflect some of the
above-mentioned correlations and we identified 500
direct repetitive sequences in the chromosome of C.

perfringens ATCC 13124, most of which (96%) have a
pattern size of 10–100 bp. About three-quarters of the
loci hado10 repeat copies and about 20% were X40%
G+C. Array length p 100bp was found in �47% of the
repeat loci. Of 78 repeat loci identified in the plasmid,
�77% had o10 repeat copies, and �97% contain-
edo40% G+C. The pattern size was 10–100 bp for
�80% of the loci, and 51% were o100 bp in array
length.
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Table 2

Primers for amplification of VNTR loci

VNTR locus Primers Tm (1C) Ta (1C)

CP6_2131_18 bp_28.2U CP6-F 50 54 50

GTAAAGATGATTGCTATTTAGAGATAA

CP6-R 50 64

TAAGGTATCATCAAAATCCACTCCAGG

CP13_1813_9 bp_16.3U CP13-F 50 55 50

AAGGAAGATGCTACTCAAGATG

CP13-R 50 53

GAAGCCATCATTACTACTCCTA

CP16_2_6bp_68U CP16-F 50 51 50

AAAGTTCCAGGTAAAATAAGAG

CP16-R 50 51

CATTCTCTTTCATTCTCTGTAA

CP19_2339_20 bp_24.9U CP19-F 50 59 50

CTCAATCCTAACAATATGTGCTGACTA

CP19-R 50 60

GTAGCAGCAATAAAACCAACCTAAA

CP42_2843_21 bp_20U CP42-F 50 59 50

GATGGCCCAAGAAACAGAAC

CP42-R 50 59

GCTGGGAATAAAGGGTTTGA

Tm: melting temperature; Ta: annealing temperature.

Table 3

Characteristics of tandem repeat loci

VNTR locus Pattern

length (bp)

Repeat copy

number

Expected

band size

(bp) a

% GC % matches Location Number of

allelesb
Di

CP6_2131_18 bp_28.2U 18 28.2 601 56 76 Chromosomalc 8 0.695

CP13_1813_9 bp_16.3U 9 16.3 295 43 73 Chromosomal 7 0.753

CP16_2_6bp_68U 6 68 1061 20 66 Episomal 7 0.743

CP19_2339_20 bp_24.9U 20 24.9 1009 24 71 Chromosomal 16 0.872

CP42_2843_21 bp_20U 21 20 1338 32 69 Chromosomal 13 0.828

Di was calculated as 1 � S (allele frequency)2. The value of Di based on the 112 isolates analyzed in this study.
aAccording to the source sequence.
bBased on screening of 112 C. perfringens isolates and including the null allele.
cNo null allele was detected at this locus.
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Selection of candidate loci was based on repeat
pattern sizes and copy numbers suitable for detection
by agarose gel electrophoresis. We screened 42 loci in a
group of 10 strains (Table 1) and those with at least two
alleles (including null allele) were considered for further
analysis. Five loci had values 40.5 in Nei’s diversity
index, meaning that there is450% probability that two
alleles chosen at random are different from each other
(Table 3), while others were excluded due to poor
amplification or low diversity index values.

3.2. MLVA scheme for Clostridium perfringens

The number of VNTR loci needed to discriminate
among isolates was based in part upon the number of
MLVA genotypes resolved by addition of loci to the
analysis and a plateau in this relationship was used as a
cut-off. In addition, the numerical index of discrimina-
tion of the combined loci was set at X0.9, as previously
suggested [14,61].

A plateau can be reached when each strain is assigned
to a MLVA genotype but clones containing two or
more strains forestall that. This is probably not
uncommon, since C. perfringens spores are considerably
resistant in the environment [67–70] and may be
mechanically transported form one locality to another.
This suggests that two strains might match even
if recovered from different geographical locations
and/or at different times. In these studies, there is a
direct relationship between the number of loci examined
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Fig. 1. VNTR analysis in 3% (wt/vol) agrose electrophoresis. Lanes 1,

6, 11 and 15 are 100 bp DNA ladder. Isolates form left to right are JGS

1984 (Lane 2, unpublished data), JGS 1413 (lane 3), JGS 1414 (lane 4),

JGS 1533 (lane 5), JGS 1657 (lane 7), JGS 1842 (lane 8), JGS 1869

(lane 9), JGS 4054 (lane 10), JGS 4059 (lane 12), JGS 4080 (lane 13),

and JGS 4099 (lane 14).
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Fig. 2. Effect of adding VNTR loci on the MLVA genotypes resolved.
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Fig. 3. Effect of adding VNTR loci on the numerical index of

discrimination.
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and the number of MLVA genotypes resolved
(Fig. 2), with an exponential increase up to the fourth
locus. Examination of clones detected on the tree
(Fig. 4) revealed that three [(JGS 1070; JGS 1076),
(JGS 1015; JGS 1022), and (JGS 1711; JGS1719)]
are likely to be true clones based on epidemio-
logical data. The numerical index of discrimi-
nation reached a value of 0.995 when five loci
were included in the analysis (Fig. 3). Thus, five
loci are likely sufficient for MLVA analysis of C.

perfringens.
3.3. Characteristics of the C. perfringens MLVA loci

3.3.1. CP6_2131_18 bp_28.2 U

The repeat locus of 507 bp mapped to the collagen—
like protein of strain 13 (CPE0955), and sequence
amplified by the forward and the reverse primer lies
within the open reading frame of CPE0955, as well. The
source sequence has 97% identity over the 203 amino
acid overlap and the most common allele is �570 bp.

3.3.2. CP13_1813_9 bp_16.3 U

The expected DNA band mapped to nagK

(CPE1279). The source sequence has 85% identity and
90% similarity over the 97 amino acid overlap. In strain
13, five genes (nagHIJKL) involved in hyaluronidase
production are widely separated on the chromosome
[57]. In addition, nagK has 6 alleles in the population
(not including the null allele), and the most common is
�282 bp. This poses the question of the importance of
hyaluronidase to C. perfringens, and whether alleles at
the nagK locus, that are represented frequently in the
population, share in the adaptation of this organism to
its ecological niche. Further sampling of the population,
and functional as well as evolutionary analysis of these
gene(s) product(s) are required to answer this question.

3.3.3. CP16_2_6 bp_68 U

The repeat locus of 433 bp is located within the open
reading frame of pCP13 parB (PCP02). However,
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forward and the reverse primers amplify 276 bp up-
stream and 352 bp downstream of the repeat locus,
respectively. The 276 bp upstream as well as the
100 bp downstream of the locus are located within parB

open reading frame, and the 50 end of the reverse
primer binds within the open reading frame of a
hypothetical protein, PCP03, �249 bp downstream
from the 30 end of parB. The nearest direct repetitive
sequence that could be located using different search
parameters lies approximately 1940 bp downstream
from the 30 end of parB, suggesting that the band
size polymorphism is likely to be a function of the
direct repeats located within parB. The most common
allele is �1058 bp.
3.3.4. CP19_2339_20 bp_24.9 U

The repeat locus of 481 bp showed no significant
similarity on the protein level with other sequences at
the NCBI database. Of the 480 bp amplified by the
forward primer, 363 or 387 bp mapped to the probable
ferrous iron transport protein B gene (CPE1660)
of strain 13 or C. tetani E88 ferrous iron transport
protein B (CTC00451), respectively. The source se-
quence has 21% identity and 44% similarity over
the 122 amino acid overlap, compared to strain 13,
and 67% identity and 84% similarity over the 129
amino acid overlap, compared to C. tetani. Repeats
were not detected in the upstream or down-
stream sequences amplified by the primer set, suggest-
ing that polymorphism in band size is likely due to
rounds of expansion or shrinkage of the repeat
locus. The null allele is the most common at this
locus.
3.3.5. CP42_2843_21 bp_20 U

The primer set amplifies 460 bp upstream and
476 bp downstream from the repeat locus. Forty-two
basepairs, including the forward primer sequence,
mapped to a strain 13 conserved hypothetical pro-
tein (CPE0571), and the source sequence has 100%
identity over the 14 amino acid overlap. In addition,
66 bp including the reverse primer sequence mapped
to the riboflavin synthase beta subunit (CPE0569)
of strain 13, and the source sequence has 100% iden-
tity over the 22 amino acid overlap. On the other
hand, the repeat locus of 402 bp, 310 bp upstream,
and 278 bp downstream mapped to the open read-
ing frame of hypothetical protein CPE0570 of strain 13.
The source sequence has 86% identity and 87%
similarity over the 330 amino acid overlap. The sequence
upstream and downstream from the repeat locus
did not reveal any direct repeats suggesting that
variation in band size is likely to be a function of
the repeats within CPE0570. The most common allele
is �200 bp.
3.4. MLVA for C. perfringens strain typing

Strain typing is essential for understanding the
epidemiology of C. perfringens infections, as well as
the ecology and evolution of the organism. MLVA is
increasingly in use for strain typing of pathogenic
organisms, and it has proven to have excellent
typability, discriminatory power, medium cost, ease of
performance, and accessibility [36,43,44,46,47,71,72].
Application of the method allowed assignment of each
isolate to a MLVA genotype; no strain had null alleles
for all five loci. Strains that match in the five loci were
assigned to the same genotype (or clone). CP13 and
CP42 were null alleles in 3.6% of the strains while the
CP16 locus was a null in �25% of the total number of
strains.

When human and pipetting errors are ruled out,
successful PCR amplification depends essentially on the
degree of identity between the primer sequence and
target sequence. Even in protein-encoding genes that are
under purifying selection, synonymous substitutions
would lead to a decrease of this identity within the
organism population. This suggests that it is probable to
end with poor amplification and a weak signal (very
faint band) when running VNTR analysis, and in this
case the amplification process would be expected to
happen by chance. In testing reproducibility, all MLVA
loci data for the 15 isolates were reproducible, and weak
signals did not exceed 1% (4 occasions out of 560 for
112 isolates tested). In addition, the Dice coefficient used
to calculate genetic distance do not consider negative co-
occurrence as a proof of genetic similarity [73]. This
suggests that it is unlikely that two phylogenetically
distant isolates will be considered similar to one another.

The MLVA method based upon five loci has a
discrimination index of 0.995, meaning that if two
isolates are sampled randomly of the population, they
will belong to different MLVA genotypes on 99.5% of
occasions. This discrimination power is comparable to
that of esterase electrophoretic typing and slightly
higher than that of MLEE, described previously [14,28].

Long-term epidemiological value of any bacterial
typing methods relies not only on their ability to
discriminate between isolates, but also on the prob-
ability of detecting the same allele(s) over time [40].
Isolates included in the study were chosen randomly
with respect of genotyping date and our collection is
constructed over a period of 15 years. There is
approximately 20–40% probability of detecting the
same allele as calculated by Nei’s diversity index.
Moreover, clones were detected on the tree and some
of them have isolates that show temporal differences,
indicating the suitability of the MLVA scheme of
epidemiological studies.

Unweighted pair-group method with arithmetic mean
(UPGMA) is the most frequently used method for tree
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lengths of all the branches connecting them [75].

Y.S. Sawires, J.G. Songer / Anaerobe 11 (2005) 262–272 269



ARTICLE IN PRESS
Y.S. Sawires, J.G. Songer / Anaerobe 11 (2005) 262–272270
construction from MLVA data [35,36,38,42,43,46,74].
However, computer simulation studies showed that the
UPGMA is inferior to the NJ method for phylogeny
inference [75]. We used the NJ method to describe
the genetic distances among the tested isolates, since it
was not our intention to draw phylogenetic inference
from the MLVA data in this paper; this necessitates a
better representation of the population. The additive
tree (Fig. 4) of the tested isolates shows two major clades
with isolates displaying various genetic distances from
one another. All type EE isolates are in one major clade,
and all clones are formed by isolates that belong to a
single major toxin type. Interesting enough, in many
cases type A isolates are phylogenetically close to
isolates from other major toxin types. Almost all type
A isolates screened in this work are recovered from
disease conditions.

Finally, this technique shows all the necessary
characteristics of an efficient strain typing method. Its
PCR basis should ensure ease of transfer and applica-
tion across laboratories and rapid acquisition of results.
We plan to continue sampling of C. perfringens

population(s) and testing different hypotheses using
phylogeny to shed light on the evolution of this
organism.
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[40] Le Flèche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G. High

resolution, on-line identification of strains from the Mycobacter-

ium tuberculosis complex based on tandem repeat typing. BMC

Microbiol 2002;2:37.
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